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ABSTRACT

Nuclear matter at low and intermediate density and moderate temperature minimizes
its energy by forming nuclear clusters. Most previous theoretical investigations
ignored the formation of the heavy clusters and focused on light clusters with mass
number up to A = 4. In this work, clusters with mass number up to A = 50 are
included in nuclear matter and treated by the Nuclear Statistical Equilibrium model
(NSE) which states that clusters are in chemical equilibrium with the free nucleons in
the surrounding vapour. The Nuclear Statistical Equilibrium (NSE) model was
modified by using density-dependent binding energies of clusters where the clusters’
binding energies decrease as the surrounding medium density increases. In fact,
clusters undergo the Mott transition and get dissolved as the density of nuclear matter
increases due to the medium effects. The Pauli Blocking is found to be the prominent
factor that affects clusters’ binding energies. It was found that heavier clusters play a
significant role in low and intermediate density symmetric nuclear matter
composition and should be included in the equation of state (EoS) to make the study

more realistic. Finally, these clusters reduce the critical temperature by several MeVs.
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CHAPTER 1

INTRODUCTION

The composition and the equation of state (EoS) of nuclear matter has been an
important subject of numerous investigations in nuclear physics. In the past, scientists
used to think that nuclear matter consists of only free protons and neutrons regardless
of its density. However, at sub-saturation densities, correlations (clusters) are formed
and nuclear matter becomes inhomogeneous [1-9]. In particular, this is important for
nuclear matter at sub-saturation density which exists in the crust of neutron stars and
in the envelope of core-collapse supernovae [10-12] and which gains the attention of

cosmologists and astronomers.

These bound states (clusters) change the composition of nuclear matter and affect its
thermodynamical behaviour. The occurrence of clusters also minimizes nuclear
matter energy [7]. In general, the formation of clusters varies with nuclear matter
density and temperature whereas clusters dissolve with increasing density due to the

decrease in their binding energies.

Pauli Blocking is one of the main medium effects on the cluster properties as it
causes its binding energy to decrease as the medium density increases [13]. At a
certain density called the Mott density, the binding energy vanishes and the cluster

dissolves and its nucleons become free. Hence the cluster’s binding energy has to



take density-dependent form to include the medium effects. That is why the

clustering is limited to low and intermediate densities.

Ropke et al studied a homogeneous system of free nucleons and composite particles
which are states of bound nucleons and discussed its thermodynamic properties in
1982 [1]. They studied especially the abundance of deuterons immersed in a medium
of free nucleons by using the Bethe-Goldstone equation for thermodynamic Green
functions. After one year, Ropke et al extended their work by including helions,
tritons and alpha particles as well as deuterons and included medium effects in the
equation of state [2]. Helions are the nuclei of *He and consist of two protons and one
neutron while the tritons are the nuclei of ®H and consist of two neutrons and one
proton. However, they ignored the difference in binding energy between helion and
triton. They concluded that the cluster formation leads to a reduction in the critical

temperature of nuclear matter by 2.5 MeV.

The stability of hot nuclei immersed in a vapour of free nucleons was studied by
Levit and Bonche in 1985 [14] by using an equation of state of nuclear matter derived
on the basis of the Hartree-Fock approximation with an effective nucleon-nucleon
interaction of the Skyrme type. They emphasized that such nuclei cannot exist above
a certain temperature which they called the limiting temperature. The limiting
temperature depends strongly on the properties of the nuclear matter contained in its

equation of state, and also on the surface tension of the nuclei.



Levit and Bonche’s equation of state was generalized by Jagaman to describe
asymmetric nuclear matter [3]. In another study [15], Jagaman improved the equation
of state in [3] by taking into account the density-dependent nucleonic effective mass
and the vapour’s electric charge and showed that the vapour electric charge raises the

limiting temperatures.

Light clusters with mass number up to A = 4 were included by Beyer et al [4] in a
study which depends on the statistical model and the Hartee-Fock (HF)
approximation for the quasi-particle energy. They concluded that the composition of
nuclear matter with light clusters at finite temperatures varies with nuclear matter

temperature, density and CM momentum of clusters.

Horowitz and Schwenck constructed a low density nuclear matter equation of state in
2006 by including protons, neutrons and alpha particles [6]. Their work was based on
the nuclear statistical equilibrium model and the virial expansion. They concluded
that alpha particles form as the nuclear matter density increases, which leads to a

significant reduction of the pressure of low density nuclear matter.

In 2008, the appearance of light clusters with mass number up to A = 4 in core-
collapse supernova was studied by Sumiyoshi and Ropke by using a quantum
statistical approach. They found that deuterons, tritons, helions and alphas appear
strongly in a wide region from the surface of the proto-neutron star which is a tiny

survivor star after supernova explosions [16].



The basic properties of light clusters in hot and dense nuclear matter were studied by
Ropke in 2009 [13] by using Green’s function at different limits. At first, at low
density limit where nuclear statistical (NSE) and virial models are valid. Secondly, at
high density limit where relativistic mean field model (RMF) is valid. He included
clusters with mass number up to A = 4 and ignored high density region as
temperature goes down because he predicted that heavier clusters with mass number
(A > 4) will appear there and become more important. He noticed that results deviate
from nuclear statistical equilibrium (NSE) model at densities that exceed

10~* nucleon/fm® due to the medium modification effects.

Heckel et al included clusters with mass number up to A < 13 in the equation of state
(EoS) of low density supernova matter and determined its composition [17]. They

found that these clusters lower the critical temperature.

Typel et al [7] investigated the composition of nuclear matter at finite density and
temperature (T < 20) including light clusters with mass number up to A = 4 by using
a microscopic quantum statistical (QS) approach and a generalized relativistic mean
field (RMF) model. Both approaches give the same results as the nuclear statistical
equilibrium (NSE) model in the low density limit as shown in the study. They
modified the properties of the clusters by including the medium effects on their
binding energies. This eventually leads to the dissolution of the clusters due to the
reduction in their binding energies as the medium density increases. Cluster

dissolution occurs when the binding energy goes to zero due to the medium effect of



Pauli Blocking. This dissolution is known as the Mott transition. They found that the
composition of nuclear matter with clusters varies as its density and temperature
changes. They found that alpha particles are dominant at low temperatures
(T<2MeV) and low densities (less than 10~2 nucleon/fm® but at higher
temperatures the deuterons are dominant at these densities. They also discussed the
effect of clusters formation on the liquid-gas phase transition and other
thermodynamical quantities. However, they mentioned that the formation of clusters
reduces the entropy per nucleon of symmetric nuclear matter as compared to pure
neutron-proton matter without clusters. This point is explained in Appendix A to
clarify that it does not conflict with the Second Law of Thermodynamics.

The limiting temperature for hot nuclei which are in thermal, chemical and
mechanical equilibrium with the surrounding vapour including clusters was studied
by Talahmeh and Jagaman [18]. They included clusters with mass number up to A =
4 in the vapour and found that the presence of these clusters reduced the limiting
temperature by several MeVs. However, W. Awad study [19] included clusters with
mass number up to A = 25 in low density symmetric nuclear matter and emphasized
that these clusters must be considered in low density symmetric nuclear matter
equation of state as their presence reduces the critical temperature of the system.
There has also been definite experimental evidence for an abundance of light clusters
in nuclear matter at low density and moderate temperatures [20-22]. In general they

this was observed in the abundant emission of light particles in low energy heavy-ion



collisions. For example, [22] presented a first experimental determination of in
medium cluster binding energies and Mott points for light clusters (d, t, h and «) in
low density nuclear matter produced in collisions of “°Ar and ®4zZn projectiles with
11251 and 12%Sn target nuclei. Where the Kinetic energy per nucleon of projectile
nuclei is 47 MeV. Their results were in good agreement with those predicted by
recent theoretical predictions based upon the implementation of Pauli blocking effects

in a quantum statistical approach in [7].

In the present thesis, we consider the formation of light and medium clusters with
mass number up to A = 50 in the nuclear vapour by using a modified form of the
nuclear statistical equilibrium model (NSE) that includes the medium modification of
the clusters properties. We also examine how the value of the critical temperature
(T.riticar) 1S affected by the inclusion of clusters with mass number up to A =50 in
the vapour state of nuclear matter at low and intermediate densities up to p =0.1

nucleon/fm3.

In Chapter 2, we describe the equation of state of ideal quantum gases. In Chapter 3,
we construct the equation of state of nuclear matter consisting of nucleons interacting
via the Skyrme effective interaction and study its behaviour at different temperatures
to determine its critical point. In Chapter 4, we review various theoretical
investigations of clustered nuclear matter and focus on the Nuclear Statistical
Equilibrium model. In Chapter 5, we determine the composition of clustered

symmetric nuclear matter by including clusters with mass number up to A = 50 at



different temperatures. Finally, we discuss our results and present our conclusions in

Chapter 6.



CHAPTER 2

EQUATION OF STATE OF IDEAL QUANTUM GASES

The ideal quantum gas can be defined as a system of indistinguishable non-
interacting particles that obey Fermi-Dirac or Bose-Einstein statistics. The equation
of state is a thermodynamic mathematical relation which relates the system density to
the other main system variables, like its pressure, volume and temperature. Each

system has its own fundamental characteristic equation of state [23].

In this chapter, we will discuss an infinite system of non-interacting fermions and
bosons respectively, and mention the equation of state for them to use it later in

constructing the clustered nuclear matter equation of state.

2.1 IDEAL FERMI GAS EQUATION OF STATE

The ideal Fermi gas is a physical system consisting of a large number of non-
interacting identical fermions. It is the quantum mechanical version of an ideal gas.
Fermions are particles whose spin quantum number is half an integer. These particles
follow Fermi-Dirac statistics where it is prohibited that two identical fermions with
same guantum numbers occupy the same quantum state, this is known as the Pauli

Exclusion Principle [24].



Protons and neutrons are fermions, they differ in their electromagnetic properties
because of the positive charge that the proton has. They both are treated in the same
way if the Coulomb force interactions between protons are switched off. So we can
say that the proton and neutron are two states of the same particle called the nucleon
with mass nearly 940 MeV/c?. A system of nucleons at low densities can be classified

as an ideal Fermi gas.

The Fermi-Dirac distribution function ﬁ(€+#)+1 for a system consists of N identical
e i

fermions with single fermion energies of ¢; satisfies the relation [23]:

N _ 1 21
g Zni_ Zeﬁ(fi—#)+1 @1
L L

where g is the spin-isospin degeneracy factor that arises from the internal structure of
particles such as spin s and isospin I (g = (2s + 1)(2I + 1)), n; is the probability
that the ith energy level is occupied by a single fermion at absolute temperature T,
u is the fermionic chemical potential which we will discuss later in this chapter and

B = 1/kgT where kg is the Boltzmann constant.

We can use energy units instead of Kelvins for the temperature by multiplying the

absolute temperature by Boltzmann’s constant:

kg = 8.617 x 10~ MeV/Kelvin
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In these units a temperature of 1 MeV is equivalentto T = ( 1.16 x 101°) Kelvin in
Sl units. From now on, | will use T in MeV instead of kzT, and it will have energy

units.

The equation of state for an ideal gas of non-interacting identical fermions can be

expressed as an equation for the chemical potential u(T,p ) or the pressure P(T,p)

[3, 18]:
pE > ()
u(T,p) =T |In (%) + an (TTP) ] 2.2)
n=1
o 7 2B p\"
P(T,p)=Tp|1+ zn+1b"<T )] (2.3)
n=1 9
where p is the number density of the fermions, A, = (%)E is the thermal

wavelength of a fermion which is roughly the mean de Broglie wavelength of the gas
particles in an ideal gas at the specified temperature T, g is the spin-isospin
degeneracy factor (g = 4 for a gas of nucleons). The coefficients b,, up to n = 6 were
evaluated in [18, 25] and are listed in Table 2.1. These coefficients reflect the higher
order degeneracy corrections that significantly modify the chemical potential and
pressure of an ideal Fermi gas as compared to those for an ideal classical gas. These
coefficients have alternating signs and with increasing the order n they rapidly
decrease. The contribution of higher order b, coefficients in the equation of state

decreases as temperature increases and can be ignored as will be seen later in this
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chapter. Especially at T > 4MeV, the contribution is negligible for densities up to 0.1

nucleon/fm3.

Table 2.1: Numerical values of the b coefficients evaluated for the ideal Fermi gas.

by
n=1 0.3535533905933
n=2 —0.0049500897299
n=3 1.483857713 x 107*
n=4 —4.4256301 x 107°
n=>5 1.006362 x 1077
n==6 —4.272 x 10710

In our work, we deal with an infinite ideal Fermi gas of non-interacting fermions. The

single particle energies in Eq. 2.1 are given in this case by

h2k?
& =

2m

where k = 2w /A is fermion wave number, and m is the fermion mass.

To investigate the convergence of Egs. 2.2 and 2.3, the pressure of an infinite system

of ideal nucleons is evaluated at different temperatures and up to different orders of n.
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It is clear from Fig. 2.1 that the convergence of the series depends on the temperature.
At T = 2 MeV the pressure series converges at low densities up to about 0.06
nucleon/fm®. The n = 6 term modifies the pressure summation at 0.1 nucleon/fm® by
only about 12%. However, at the higher temperatures the pressure series still
converge up to 0.1 nucleon/fm® which means that the contribution of higher orders of
n is negligible for T > 4 MeV. For example at T =4 MeV the n = 6 term modifies the
pressure at the density of 0.1 nucleon/fm? by only 0.06%. Hence in our work we will
be satisfied with the first six terms in Egs. 2.2 and 2.3 because we will not deal with

system densities that exceed 0.1 nucleon/fm?,
2.2 IDEAL BOSE GAS EQUATION OF STATE

The ideal Bose gas is a physical system consisting of a large number of non-
interacting identical bosons, it is also the quantum mechanical version of an ideal gas.
Bosons are particles whose spin quantum number is an integer, and they follow Bose-

Einstein statistics.

At low temperatures close to absolute zero, all ideal gas bosons accommodate in the
ground state at the same time, this phenomenon is called Bose-Einstein
Condensation. However, that is not allowed for an ideal Fermi gas as mentioned

before because of the Pauli Exclusion Principle.
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The Bose-Einstein distribution function B(£+#)1 for a system consisting of N
e 3 -

bosons with the single Bose particle energies ¢; satisfies the relation [23]:

N B 1 -
E_Zni_Zeﬁ(Si—#)_l (24)
L L
Where n; is the probability that the ith energy level is occupied by a single boson at
temperature T, and u is the bosonic chemical potential.
The Ideal Bose gas chemical potential and pressure can be formulated as [18]:

Z d, <’1%7p> ] (2.5)

n=1

3
u(T,p)=T [ln (%) +

P(T,p)=Tp (2.6)

o n A p\"
1-I-Z:n+1d"< g )

n=1

Where d,, = (—1)"b,, are the Bose gas coefficients and the b,, coefficients are given

by table 2.1.

To investigate the convergence of Egs. 2.5 and 2.6, the pressure of an ideal bosonic
infinite system is plotted at different temperatures and orders of n as shown in Fig.
2.2. | choose a gas of non-interacting alpha particles which is classified as bosonic
ideal gas since the alpha particle has spin zero. The alpha particle spin is zero, so the

spin degeneracy factor for non-interacting alpha particles gas is equal to 1.
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Fig. 2.2: The pressure of ideal alpha particles gas at different temperatures including
terms up to order n.



16

The negative pressure at low temperatures reflects the Bose-Einstein Condensation
phenomenon. By making comparison between Fig. 2.1 and Fig. 2.2, it is obvious that
the pressure series for an ideal bosonic gas converges up to higher densities than the
ideal fermionic gas. That is due to the higher mass of alpha particles compared with
nucleons mass which affects the thermal wavelength and makes it smaller. For this
bosonic ideal gas, the pressure series converges at low densities up to about
0.05 nucleon/fm® at T = 1 MeV as illustrated in the upper part of Fig. 2.2. However,
the n = 6 term modifies the pressure summation at T = 1 MeV by 9% at 0.1
nucleon/fm® but at T = 2 MeV its effect does not exceed 0.3%. So the summation to
the first six terms will be satisfactory since the convergence of the pressure series of
bosonic ideal gas is assured at higher temperatures for densities up to 0.1

nucleon/fm2.
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CHAPTER 3

SKYRME EFFECTIVE INTERACTION AND NUCLEAR MATTER

EQUATION OF STATE

Nucleons in nuclear matter interact with each other via the nuclear force. We will use

a simple parameterization of the nuclear force called the Skyrme interaction [26].

3.1 SKYRME EFFECTIVE INTERACTION MODEL

The Skyrme interaction was proposed by Skyrme in 1962, and then used by
Vautherin and Brink [27] to obtain the properties of finite nuclei as well as infinite
nuclear matter. In this work we will use a zero-range Skyrme force in addition to

switching off the Coulomb force between the protons,

. . t3 ot 7
Vi = —t6( — 1) + _Po[ >

c l GRNEY (3.1

where v,, is the two-body Skyrme interaction between two nucleons, #; and 7, are
the position vectors of the two nucleons relative to a reference point, p is the nuclear
matter density and o is a parameter that controls nuclear matter incompressibility
without changing its binding energy [25]. The incompressibility is a measure of the
relative volume change of a fluid or solid as a response to a pressure change and is

given by

10P
Vov
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where V and P are the nuclear matter volume and pressure respectively. The minus

sign ensures that the incompressibility quantity is always positive.

The Skyrme interaction as illustrated in Eq. 3.1 has a density-dependent component,
which implies that the interaction between two specified nucleons is affected by the

existence of other nucleons in the nuclear matter (three-body forces).

The Skyrme interaction parameters t, and t; are related to the parameters a,and a;
of the equation of state of interacting nuclear matter [see Egs. 3.13 and 3.14 below]

by the following relations [3]:

3
= —t 3.2
Qo glo (3.2)
= ! t 3.3

These parameters together with o can be determined phenomenologically by fitting

the ground state properties of nuclear matter [3]:

_ (K—9Ep— Ey)

7T T9E; +3Ey) (3.4)

dopy = [(1 + o) Ep -; (a + 5) EK] (3.5)
Ex

appet? = M (3.6)
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where Ep is the nuclear matter binding energy per particle, whereas Ej is the nuclear
matter Kinetic energy per particle. p, is called the saturation density which is defined

as the uniformly-distributed density inside a large-radius heavy nucleus [3, 14]:
po = 0.17 nucleon/fm?®

This value is not the same value of finite-nuclei average density which is defined as

AR3 for mean nuclear radius R = r,A'/3, where r, = 1.2 fm. As a result, the

pP=3

3

average density is found to be constant for any nucleus regardless of its mass number
and can be approximated to 0.14 nucleon/fm3. The difference between these two

values is attributed to the absence of the surface region in infinite nuclear matter [24].

Infinite nuclear matter binding energy per particle can be determined from the
Weizsaecker (semi-empirical) mass formula for the binding energy B(Z,N) of a

nucleus consists of Z protons and N = A — Z neutrons [24],

Z(Z-1) (N-2)2
B(Z,N) = a; A— a, A>3 — ay A T A+ A (3.7)

a, a,, a3, a,and A are determined by fitting experimental binding energy data for
some nuclei, this is why it is called semi-empirical formula. The common values are

[24]:

a,; = 16 MeV is called the volume energy parameter.

a, = 17 MeV is called the surface energy parameter.
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a; = 0.6 MeV is called the coulomb energy parameter.
a, = 25 MeV s called the symmetry energy parameter.
A is the pairing energy parameter and it is given by:

o) even — even nuclei .
A=40 odd — even nuclei ; where § = — MeV
— 6 odd — odd nuclei

In many cases it is better to use the binding energy per nucleon:

B(Z,N) a, Z(Z-1) (N-17)2 A
A T AT BT e T %zt (3.8)

For finite nuclei, the binding energy per nucleon is around 8 MeV for most heavy

nuclei with mass number larger than twenty (A > 20) as illustrated in Fig. 3.1.

-
=

4 '—1HE

Binding energy/nucleon (MeV)

i} 100 200
Nucleon number A

Fig. 3.1: The binding energy per nucleon for finite nuclei [24].
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For infinite nuclear matter; which is described as an idealized system of an infinite
number of nucleons interacting via the nuclear strong force with the Coulomb force
switched off, the surface energy term vanishes since it is proportional to A=/3. The
Coulomb term is also equal to zero due to switching off the Coulomb repulsion
between protons. Moreover, we shall assume that the proton number is equal to the
neutron number (Z = N). Such a system is called symmetric nuclear matter which
leads to symmetry energy term cancellation. At last, we are dealing with an infinite
number of nucleons so the pairing term goes to zero. Now the binding energy per
nucleon for infinite nuclear matter is given by the following relation:

B(Z,N)
4 %

(3.9)

Hence, infinite symmetric nuclear matter binding energy per nucleon (Eg)is 16

MeV.

Infinite nuclear matter kinetic energy per particle can be determined by using Fermi

gas model. Whereas the kinetic energy depends on Fermi momentum k; and given by
[23]:

_3 (hkp)” 3

Ey = ¢ (3.10)

52 Muucleon
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By substituting p, = 0.17 MeV in Eq. 3.11, the Fermi momentum is k; = 1.36 fm™.
Hence infinite nuclear matter Kinetic energy per particle (Ex) is 24 MeV. However,
the kinetic energy per particle for finite nuclei is 20 MeV by using the average
density for finite nuclei p = 0.14 nucleon/fm? instead of the saturation density in Eq.

3.11 and the Fermi momentum is kf = 1.27 fm* for finite nuclei.

The Skyrme interaction parameters are listed in table 3.1, these parameters will be

used later in this chapter.

Table 3.1: Skyrme interaction parameters [3, 14].

aogpo(MeV) azpy* °(MeV) K (MeV)
o= 1 64 24 384
o= 0.25 136 96 222
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3.2 SYMMETRIC NUCLEAR MATTER EQUATION OF STATE

INCLUDING SKYRME INTERACTION

The ideal Fermi gas equation of state was discussed in chapter 2 where the nucleon-
nucleon interaction was ignored. If the nucleons interact via the Skyrme force only,
we can extend the results of chapter 2 by including Skyrme force effects. The main
effect will be on the single particle energies of the nucleons in symmetric nuclear

matter with switching off the Coulomb force,

21,2
£ = hzfn + g, (3.12)
where g, = — Zto p+ 23—4t3 [1 + %] pl*t? is the Skyrme single-particle energy term

[27].

The pressure and chemical potential of symmetric nuclear matter with Skyrme

interaction equations of state respectively as derived by Jagaman [3, 15],

Bo\ . o, (Bp\

n=1
® 3

n ATPn
1+ zn+1bn< g )] (3.14)

n=1

A(T,p)=-2app+ az2+0)pl+? +T

P(T,p) =—app* + az(1 +0)p@* +Tp

where g = 4 is the nucleon spin-isospin degeneracy factor.
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Fig. 3.2: The pressure and chemical potential isotherms for symmetric nuclear matter
including Skyrme interaction at different temperatures with ¢ = 0.25.

The Pressure and Chemical potential isotherms for symmetric nuclear matter with the
Skyrme interaction are shown in Fig. 3.2. Both sets of isotherms increase with density
until they reach to a maximum value before dropping to a minimum and rising again.
Their behaviour is the same as that of the Van der Waals equation of state. Each
isotherm consists of three regions; the first one is the low-density vapour region
where the pressure increases with density. The second is the intermediate-density
region where the isotherm has a negative slope and is thus mechanically unstable.
The third is the high-density liquid region. As the temperature increases the maxima
and minima become less prominent until they disappear as can be seen for the T = 20

MeV isotherms.
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At a certain temperature which is called the critical temperature, the pressure or
chemical potential isotherm has one inflection point; the maximum and minimum

will merge. This inflection point is called the critical point and defined as [28]

0P _ 9°P

ou  0%u
% azp Olor % = % =0 (315)

Hence, above the critical temperature the pressure and chemical potential isotherms
monotonically increase as density increases and only one fluid phase exists. So
T =20 MeV is located above the critical temperature due to isotherms continuously
increasing with density. In particular the critical temperature must be located between

15 and 20 MeV.
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Fig. 3.3: Pressure isotherms for a nucleonic gas with the Skyrme interaction (o =
0.25) at the critical temperature 17.32 MeV and at two nearby temperatures.
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In order to determine the critical temperature, we plot several isotherms at different
temperatures differing by 1 MeV. We can conclude that the critical temperature for a
nucleonic gas with Skyrme interactions (o = 0.25) is 17.32 MeV as illustrated in
Fig. 3.3. Hence the critical point for an infinite symmetric nuclear matter consists of

nucleons interacting via Skyrme interaction is defined in table 3.2.

Table 3.2: The critical point for symmetric nuclear matter with including Skyrme
interaction at different temperatures with & = 0.25.

Tcritical Pcritical Pcritical

(MeV) (nucleon/fm?) ( MeV.fm3)

In this work 17.32 0.058 0.2759
H. R. Jagaman [3] 17.34 - -
S. Levit, and P. Bonche [14] 17.22 0.057 0.27

S. Talahmeh, and H. R. Jagaman
[18]

17.3 - -

The small difference between our result and other ones may be attributed to the
different number of terms (n) included in the pressure isotherm series as defined in
Eq. 3.14. In [3] the series summation of pressure was carried up to n = 5 whereas in
[14] the summation involved the terms n = 1 only. On the other hand, in [18] and our

work the pressure series was summed up to n = 6.
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CHAPTER 4
NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE)

The nuclear matter vapour phase becomes inhomogeneous due to the existence of
light clusters at moderate temperatures and densities much less than the saturation
density. These clusters which are classified as bound nuclear states can minimize
nuclear matter energy. Moreover, these two-, three-, and many-body correlations will
change nuclear matter composition and modify its thermo-dynamical behaviour. At
p < 0.17 nucleon/fm® with moderate temperatures T <20 MeV, an effective
interaction potential expresses the nucleon-nucleon interaction and the quark

substructure and excitations of internal degrees of freedom of nucleons are neglected

[7].

Nuclear matter with clusters is widely discussed in many studies which depend on
several theoretical investigations, they showed that clusters are dominant at very low

densities and must be included in the nuclear matter equation of state.
4.1 CLUSTERED NUCLEAR MATTER THEORETICAL INVESTIGATIONS

Including clusters in the nuclear matter equation of state has been studied by using
various models; each one treats nuclear matter with a different technique than the

others.
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4.1.1 THE VIRIAL EXPANSION

This model is one of the oldest and general methods in constructing the equation of
state of a dilute gas. Bound and scattering states are included here, but the medium

effects on the cluster formation and dissolution are neglected.

It has two major assumptions. First, a gas phase system with decreasing temperature
or increasing density does not undergo a phase transition. Second, fugacity
(z = e*/T) is small, so the partition function can be expressed in powers of z. Here

u is the chemical potential and T is the temperature [6, 29].
4.1.2 THE MICROSCOPIC QUANTUM STATISTICAL APPROACH

The microscopic quantum statistical approach is a non-relativistic approach based on
the many body theory. It uses effective nucleon-nucleon interactions explicitly and
includes the medium effects on the cluster formation and dissolution. It treats the
nucleons and clusters as quasi-particles. The quasi-particle energy of a cluster
consisting of A-nucleons (Z protons and N neutrons) in the ground state is given by
[7, 13, 30]:

2

quaSLk E°
(k) = Efz+ 57—

+ AEF5(K) + EfG* (k) + AESFUO™P (k) + - (4.1)

where m is the nucleon mass, and K is the cluster’s momentum. The first term in Eq.
4.1 expresses the cluster binding energy in vacuum, while the second one is the

cluster’s kinetic energy. AE;%(P) is the shift that occurs in the self-energy due to the
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medium effects, where the self-energy is the potential felt by the cluster including all
interactions between the cluster and all other clusters and free nucleons. Ef2“(P) is
the Pauli blocking term which will be discussed later in this chapter. Finally,
AEff}”“’mb (P) is the Coulomb term, it expresses the cluster energy change due to the
electric repulsion between the cluster’s protons. However, it is small and vanishes as

we switch off the Coulomb force in symmetric nuclear matter.
4.1.3 RELATIVISTIC MEAN FIELD MODEL (RMF)

The clusters are treated as point-like particles and their internal structure is neglected.

Nucleons interact by mesons exchange between them [7, 31].

The medium-modified clusters are inserted as explicit degrees of freedom and treated
as quasi-particles. The medium effects are included by using density and temperature-

dependent shifts of cluster binding energy.
4.1.4 NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE)

The Nuclear Statistical Equilibrium is the simplest model that treats nuclear matter
from a statistical point of view [4, 32]. My work is built on it with some

modifications.
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4.2 NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE) IN ORIGINAL

FORM

The Nuclear Statistical Equilibrium model treats the nuclear matter at low densities
from a statistical point of view as non-interacting or minimally interacting particles at
statistical equilibrium. Bound states are just included here while the excited and
scattering states are ignored as are the medium modifications [7]. All models should

reproduce the limiting cases of the NSE model at very low densities.

In this work we will deal with Low Density Clustered Symmetric Nuclear Matter that
consists of fermions (free nucleons and fermionic clusters — odd mass number) and
bosons (bosonic clusters — even mass number). The effective nucleon-nucleon
interaction is ignored here since we don’t want to double-count the effect of the

interaction; the clusters are formed as a result of the interaction between nucleons.

Each cluster type has its own mass number (A = N + Z) in clustered symmetric
nuclear matter, these clusters are in chemical equilibrium with the surrounding

nucleons in the vapour as NSE model assumes.

Uctuster = Z Up + Np,=Ap (4.2)

where u.useer and p are the chemical potential for the cluster and the surrounding
vapour of nucleons respectively. Here the proton and neutron chemical potentials are
equal (u, = uy,) due to the properties of symmetric nuclear matter. The nucleon’s

chemical potential is given by Eq. 2.2. The total density of clustered symmetric



31

nuclear matter consists of all contributions from free nucleons and clusters, which is

given by

Ptotal = pfree nucleons + Z Acluster Pcluster (4-3)

The contribution of each type of cluster to the total density depends on the probability

(ncuster) OF finding the cluster in its ground state with kinetic energy efluster =

21,2
21: “ and its spin degeneracy factor (g = 2s + 1 where s is the cluster’s spin)
cluster
[18, 33].
__9 3
Pcluster = (27)3 d kncluster (4-4)
Ncluster = {exp[ﬁ(ggluster — Hcluster — Bgluster) + 13 (4.5)

where the (4) sign is used for fermionic clusters while the (—) sign is used for
bosonic clusters. B, qter iS the cluster’s binding energy at zero density, that is in

vacuum.

The original NSE model predicts that at high density most nucleons in symmetric
nuclear matter would be bound and form different clusters. However, this is
unphysical and can be corrected by including the medium effects on cluster formation

and dissolution.
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In this work, we will modify the NSE and take into account the medium effects to
remedy its deficiency by considering the reduction in the binding energy of the

clusters as the density of the surrounding vapour increases.

4.3 THE MODIFIED NUCLEAR STATISTICAL EQUILIBRIUM MODEL

Clusters dissolve as clustered symmetric nuclear matter density increases. The main
medium effect is called the Pauli blocking which is caused by the fermionic nature of
nucleons (protons and neutrons) where the quantum mechanics treat them as
indistinguishable particles and requires the total wavefunction to be anti-symmetric
under the exchange of any two identical fermions. This leads to the Pauli Exclusion
Principle which prevents identical particles from occupying the same point in the
position and momentum phase-space simultaneously. This applies not only to the
exchange of nucleons inside a cluster but also to the exchange of any of these

nucleons with the free nucleons in the outside vapour.

Pauli blocking acts on the bound states (clusters) by decreasing their binding energy
as the density of symmetric nuclear matter increases [7, 30, 34]. At a certain point in
medium density, the binding energy of the cluster vanishes and the cluster dissolves
to its constituents. This point is known as the Mott density py.:+ [13]. Each cluster
has its characteristic Mott density which depends on its temperature and its centre of
mass momentum. The cluster can survive to higher densities as temperature increases

or if it has non-zero CM momentum (that is the Mott density increases with
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temperature) [35]. In this work, we will use Mott densities calculated at zero CM

momentum clusters [7].
4.3.1 DENSITY-DEPENDENT BINDING ENERGY

The modification that we entered to NSE model to remedy its insufficiency is to use a
density-dependent binding energy for the cluster which we must include in Eq.4.5
instead of the binding energy at zero-density, that is the binding energy of the
corresponding nucleus with the same A and Z. The binding energies of light clusters
we use were calculated in [7]. They decrease almost linearly with density and to
simulate these effects we have used the following form:

Ptotal
Beruster = Bgluster (1 - == > (4.6)
Pmott

4.3.2 MOTT DENSITY OF CLUSTERS

The medium effects on the cluster’s binding energy were studied by using different
models [30, 36]. To get zero CM momentum Mott densities for our clusters we used
the results of Typel et al [7] which were based on the relativistic mean field model
(RMF) which are shown in Fig. 4.1. The values of the Mott densities up to A = 4

obtained from these results are listed in table 4.1.
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Fig. 4.1: The binding energy as a function of medium density for deuteron, triton,
helion and alpha clusters at different temperatures [7].

Table 4.1: Zero-CM momentum Mott density values for deuteron, triton, helion and
alpha clusters at different temperatures.

T=5MeV | T=10MeV | T=15MeV | T=20 MeV
Deuteron [ nucleon/fm3 ] 0.0025 0.0047 0.0071 0.0095
Triton [ nucleon/fm3 ] 0.0040 0.0065 0.0096 0.0129
Helion [ nucleon/fm3 ] 0.0035 0.0063 0.0094 0.0128
Alpha [ nucleon/fm? ] 0.0080 0.0120 0.0165 0.0215
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The Mott densities for heavier clusters (A > 4) can be extrapolated from the Mott
densities for the deuteron, triton, helion and alpha clusters (d, t, h and «) at different
temperatures. First we use a quadratic polynomial fit method to parameterize the

Mott densities for each cluster (d, t, h and «) as a function of temperature T.

Mott — density;,(T) =aT?+bT +c (4.7)

Where i is cluster indicator and (a, b and c) are the coefficients of the quadratic

polynomial which are listed in table 4.2.

Table 4.2: Temperature-dependant Mott densities Quadratic polynomial
coefficients for (d,t, h and a).

a b C
Cluster [ nucleon ] [nucleon] [nucleon]
fm3 MeV?2 fm3 MeV. fm3
Deuteron 0.004958 0.000418 0.00035
Triton 0.01983 0.000396 0.0018
Helion 0.0148725 0.00047 0.001
Alpha 0.0067379 0.00065 0.0045

So at any temperature, we can know the extrapolated Mott densities for

(d,t,h and a) clusters.
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Secondly, for each temperature, Mott densities for heavier clusters can be estimated
by extrapolating the Mott densities of these four light clusters using a quadratic fit

polynomial method

Mott — density (A) =p A’ +qA+r (4.8)

The coefficients (p, q and r) are listed in table 4.3 for different temperatures. These
coefficients are obtained by fitting the Mott densities of the four light clusters with

(A <5). An example of this extrapolation procedure at T =6 MeV is shown in Fig. 4.2.

Table 4.3: Quadratic polynomial coefficients for mass number-dependant Mott
densities at different temperatures.

p [nucleon™? fm~3] q [fm™3] 7 [nucleon fm™3]
T=2MeV 0.0012 —0.0049 0.0062
T=4 MeV 0.00145 — 0.0061 0.0085
T=6 MeV 0.0016 —0.00665 0.0098
T=8 MeV 0.00175 —0.00725 0.0113
T=10 MeV 0.0019 —0.00775 0.0126
T=12 MeV 0.0021 —0.0086 0.0145
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CHAPTER 5
CLUSTERED SYMMETRIC NUCLEAR MATTER

The composition of clustered symmetric nuclear matter can be determined by
evaluating the fraction X, Of nucleons that are consumed in building each type

of clusters:

Pcluster
Xctuster = Acluster (5'1)
Ptotal

where pouster aNd procar are given by Eq. 4.4 and Eq. 4.3 respectively.

Now, we are ready to study the abundance of clusters at different temperatures. But
there is still one problem related to the strength of the two body correlations which is
called the Deuteron abundance overestimation. This problem had been studied in
[7, 36]. They found that deuterons can be formed only for CM momenta larger than
the deuteron Mott momentum hkZ/°t if symmetric nuclear matter densities are higher
than the Deuteron Mott density. However, this has a strong effect on the fractions of
other clusters. So to avoid this problem, they suggested that we must limit our
momenta only over the region k > kX°t* where the bound state energy is lower than

the continuum of scattering states. These corrections become important with

increasing temperatures.

The value of kX°* as calculated in [29] is given by:
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[ k(T protar » Puotta )]2

—(4.5185-0.16164 T+0.0056582 T?)

2(1.32-0.02782T)
= 1/2 (52)

2
(4.5185-0.16164 T+0.0056582 T?) 1000 ( Protal— PMott.d
4(1.32-0.02782 T)? (1.32-0.02782T)

The effect of limiting the deuteron momenta integration to the region k > kX is
shown in Fig. 5.1 below. This overestimation appears only in the case of the deuteron

because of its extremely low binding energy.
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Fig. 5.1: Fraction of nucleons in Deuteron clusters with including all momentum

space and with case of avoiding Deuteron overestimation at T = 12 MeV.
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5.1 CLUSTERS INCLUDED IN THIS WORK

Most previous studies [7, 16, 37] examined clusterization in nuclear matter by
including deuteron, triton, helion and alpha clusters and established its equation of
state by using different approaches. Moreover, there are few studies which included
more clusters like [17] which included clusters with mass number up to A = 13 and
[19] which included clusters with mass number up to A = 25. In this work, we
included light and medium nuclei with mass number up to A = 50. For each A the
nucleus which has the largest binding energy per nucleon is selected. In addition, for
each collection of isobars we also selected and included in the calculation any other
isobar whose binding energy per nucleon differs by no more than 0.1 MeV from the
nucleus with the highest B/A. In total 89 clusters were thus selected and included in

our equation of state. They are listed in table 5.1.

Table 5.1: The binding energies, spin, spin-degeneracy factor and mass of the nuclei

used in the present calculation [38].

Cluster | A | B/A(MeV') | Blyseer (MeV') | Spin | g | Mass(MeV/c?)

H 2 1.112283 2.224566 1 3 1875.612929
H 3 2.827266 8.481798 0.5 2 2808.921109
He 3 2.572681 7.718043 0.5 2 2808.39158

He 4 7.073915 28.29566 0 1 3727.379375
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He 5 5.481 27.405 1.5 4667.831413
Li 6 5.332345 31.99407 1 5601.518569
Li 7 5.606291 39.244037 1.5 6533.834014
Be 8 7.062435 56.49948 0 7454.850833
Be 9 6.46276 58.16484 1.5 8392.750907
Be 10 6.49771 64.9771 0 9325.50401

B 10 6.47507 64.7507 3 9324.437375
B 11 6.92771 76.20481 1.5 10252.54866
C 12 | 7.680144 92.161728 0 11174.8642

C 13 | 7.469849 97.108037 0.5 12109.4833

C 14 | 7.520319 105.284466 0 13040.87228
N 14 | 7.475614 104.658596 1 13040.20527
N 15 | 7.699459 115.491885 0.5 13968.93739
@) 16 | 7.976206 127.619296 0 14895.08261
@) 17 | 7.750731 131.762427 2.5 15830.50489
@) 18 7.76703 139.80654 0 16762.02628
F 19 | 7.779015 147.801285 0.5 17692.30419
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Ne 20 8.03224 160.6448 0 18617.73353
Ne 21 | 7.971713 167.405973 1.5 19550.53778
Ne 22 | 8.080465 177.77023 0 20479.73894
Na 23 | 8.111493 186.564339 1.5 21409.2178
Mg 24 | 8.260709 198.257016 0 22335.79821
Mg 25 | 8.223504 205.5876 2.5 23268.03305
Mg 26 | 8.333872 216.680672 0 24196.50539
Mg 27 | 8.263854 223.124058 0.5 25129.62742
Al 27 | 8.331545 224951715 2.5 25126.50757
Si 28 | 8.447744 236.536832 0 26053.19581
Si 29 | 8.448634 245.010386 0.5 26984.28766
Al 29 8.34872 242.11288 2.5 26988.47705
Si 30 | 8.520653 255.61959 0 27913.24387

P 31 | 8.481178 262.916518 0.5 28844.22043
Si 31 8.45829 262.20699 1.5 28846.22189
S 32 | 8.493134 271.780288 0 29773.63027
Si 32 | 8.481569 271.410208 0 29776.58408
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P 32 8.46413 270.85216 1 29775.85019
S 33 | 8.497634 280.421922 1.5 30704.55407
P 33 8.51381 280.95573 0.5 30705.31198
S 34 | 8.583501 291.839034 0 31632.70237
Cl 35 | 8.520278 298.20973 1.5 32564.60542
P 35 8.44625 295.61875 0.5 32569.77994
S 35 | 8.537854 298.82489 1.5 32565.2819
Ar 36 | 8.519909 306.716724 0 33494.37236
S 36 | 8.575387 308.713932 0 33494.95828
Cl 36 | 8.521927 306.789372 2 33495.59119
Cl 37 8.57028 317.10036 1.5 34424.84562
Ar 37 | 8.527139 315.504143 1.5 34425.15034
Ar 38 | 8.614273 327.342374 0 35352.87754
K 39 8.55702 333.72378 1.5 36284.77017
Cl 39 8.4944 331.2816 1.5 36289.79517
Ar 39 8.56259 333.94101 3.5 36285.84396
Ca 40 | 8.551301 342.05204 0 37214.71615
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Ar 40 | 8.595259 343.81036 0 37215.54039
K 40 | 8.538083 341.52332 4 37216.53608
K 41 | 8.576061 351.618501 1.5 38146.0063

Ar 41 | 8.534371 349.909211 3.5 38149.0069

Ca 41 | 8.546703 350.414823 3.5 38145.91876

Ca 42 | 8.616559 361.895478 0 39074.00354

Ar 42 8.55561 359.33562 0 39079.14604
K 42 | 8.551245 359.15229 2 39078.03791

Ca 43 | 8.600659 369.828337 3.5 40005.63605
K 43 8.57663 368.79509 1.5 40007.96075
Sc 43 8.53082 366.82526 3.5 40007.34812

Ca 44 8.65817 380.95948 0 40934.07037
Sc 45 8.61884 387.8478 3.5 41865.4564
K 45 8.55451 384.95295 1.5 41870.93311

Ca 45 8.63054 388.3743 3.5 41866.22098
Ti 45 | 8.555631 385.003395 3.5 41867.00991
Ti 46 | 8.656356 398.192376 0 42793.38638
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Ca 46 8.66889 398.76894 0 1 42795.39193
Sc 46 | 8.621922 396.608412 4 9 42796.26119
Ti 47 | 8.661121 407.072687 2.5 6 43724.07147
Ca 47 8.63926 406.04522 3.5 8 43727.68096
Sc 47 8.66499 407.25453 3.5 8 43725.18027
\ 47 | 8.582127 403.359969 1.5 4 43726.49339
Ti 48 | 8.722903 418.699344 0 1 44652.01024
Ca 48 8.66647 415.99056 0 1 44657.30089;8
Sc 48 8.65604 415.48992 6 13 44656.50995
\ 48 8.62301 413.90448 4 9 44655.51418
Ti 49 | 8.711055 426.841695 3.5 8 45583.43326
Sc 49 8.68607 425.61743 3.5 8 45585.94824
\ 49 | 8.682806 425.457494 3.5 8 45583.52672
Cr 49 8.61327 422.05023 2.5 6 45585.64495
Cr 50 | 8.700981 435.04905 0 1 46512.21005
Ti 50 | 8.755618 437.7809 0 1 46512.05947
\ 50 | 8.695869 434.79345 6 13 46513.75622
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5.2 CLUSTERED SYMMETRIC NUCLEAR MATTER COMPOSITION AT

DIFFERENT TEMPERATURES

In this section, the composition of symmetric nuclear matter at each temperature was
determined separately. First, 25 clusters were included just as in a previous study [19]
to compare the results of the two studies and to notice the effect of including more
clusters on the composition of symmetric nuclear matter. Second, clusters with mass
number up to A= 50 were included and the fraction of nucleons in each type of
cluster was estimated at different temperatures. At each Temperature the composition
of clustered symmetric nuclear matter is determined as a function of total nuclear

matter density up to 0.1 nucleon/fm?®.
5.2.1 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T =2 MeV

The composition of clustered symmetric nuclear matter at T = 2 MeV is shown in
Fig. 5.2 and Fig. 5.3. At T = 2 MeV as special case, for each figure the density range
was separated to get the obvious changes in the composition of clustered symmetric
nuclear matter which occur in this case at extremely low densities as compared with

our upper density limit of 0.1 nucleon/fm®,

At densities less than 0.0016 nucleon/fm?® clusters with mass number up to A =5 are
dominant regardless of what heavier clusters are included in symmetric nuclear

matter as illustrated in Fig. 5.2 and Fig. 5.3.a. These are mostly alpha particles as
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shown later in the next subsection. However, as the densities increase the presence of

heavier clusters becomes more important.
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Fig. 5.2: Clustered symmetric nuclear matter composition at T = 2 MeV when the
calculation included clusters up to A = 25 only.

In the first case as illustrated in Fig. 5.2 when only clusters up to A = 25 were
included, the fraction of nucleons in clusters with mass number (6 < A < 10) does
not exceed 16% and has its largest fraction in the density range (0.001 — 0.003)
nucleon/fm3. However, clusters with mass number (11 < A < 15) are the dominant
clusters in symmetric nuclear matter in the density range (0.0016 — 0.0027)
nucleon/fm®. For the whole density range, the fraction of nucleons in clusters with

mass number (16 < A < 20) does not exceed 27%. At p = 0.001 nucleon/fm?,
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clusters with mass number (21 < A < 25) start to form and become the dominant
clusters at p > 0.003 nucleon/fm*® and the lighter clusters almost disappear for
densities higher than p = 0.039 nucleon/fm3. The contribution of the heaviest
fragments (21 < A < 25) becomes almost 100% for p > 0.004 nucleon/fm3. As
seen in Fig. 5.3.b this unrealistic result changes when we include more clusters in the

calculation.

Now, by including the 89 clusters in symmetric nuclear matter the fraction of
nucleons in clusters with mass number (4 < 25) at p > 0.002 nucleon/fm? does not
exceed 35% due to the formation of other clusters with mass number (25 <A <
50). However, clusters with mass number (4 > 26) start to form at p = 0.0012
nucleon/fmq. Clusters with mass number (31 < A < 35) are dominant in the density
range 0.0027 - 0.008 nucleon/fm? although their fraction does not exceed 25%. After
that, the dominant clusters are those with mass number (46 <A < 50) up to 0.1
nucleon/fm® as shown in Fig. 5.3.b. In particular we note that the percentage of
nucleons in one group of clusters never reaches 100% when we include the clusters

(A > 25) in the calculation.

In the present work we included several isobars for each A. For example the mass
number range 46 — 50 has 18 different nuclides and the range 41 — 50 has 14 different
nuclides. So when the fraction of heaviest clusters group (46 < A < 50) reaches 90%
at 0.1 nucleon/fm® which is about 5% per cluster type whereas The fraction of

heaviest clusters group (21 < A < 25) reaches 100% when we included only clusters
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up to A = 25 which has only five different nuclides that means each cluster type had

an unrealistically large contribution of 20% per cluster.
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Fig. 5.3: Clustered symmetric nuclear matter composition at T = 2 MeV by including
clusters with mass number up to A = 50 in the calculation. The upper part (a)
represents the fraction of nucleons in clusters with mass number2 < A < 25,
whereas the lower part (b) represents the fraction of nucleons in clusters with mass
number 26 < A < 50.
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5.2.2 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T =4 MeV

The cluster fractions in symmetric nuclear matter at T = 4 MeV as a function of the
total density are given in Fig. 5.4 when clusters up to A = 25 only were included in
the clustered symmetric nuclear matter and in Fig. 5.5 when clusters up to A = 50
were included. At densities less than 0.005 nucleon/fm? clusters with mass number up
to A =5 are dominant irrespective of what clusters are included in symmetric nuclear
matter. These light clusters up to A =5 are mainly deuterons as shown in Fig. 5.6. In
particular 61% of nucleons are bound in theses clusters at 0.005 nucleon/fm3and the
percentage is higher at lower densities reaching a maximum of about 91%. On the
other hand, this fraction decreases with increasing density and they disappear
completely at densities of about 0.014 nucleon/fm?® because of the dissolution of these

clusters due to their low Mott densities and the formation of heavier clusters.
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Fig. 5.4: Clustered symmetric nuclear matter composition at T = 4 MeV when the
calculation included clusters up to A = 25 only.
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In both cases regardless of what heavier clusters are included in the calculations, as
the fraction of the lightest clusters goes down, clusters with mass number (6 < A <
10) appear strongly with a fraction that reaches a maximum of 44% at a density
around 0.008 nucleon/fm3. With almost the same maximum fraction but at 0.012
nucleon/fm3, nucleons are bound in clusters with mass number (11 <A < 15).
However, the fraction of nucleons in clusters with mass number (16 < A < 20) does
not exceed 30% along the whole density range when clusters up to A = 25 only were
included in the calculations and this fraction is reduced to 22% when the 89 clusters

were included.
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Fig. 5.5: Clustered symmetric nuclear matter composition at T = 4 MeV. The left part
(@) gives the fraction of nucleons in clusters up to A = 25 when the clusters up to A =
50 were included in the calculations, whereas the right part (b) gives the fraction of
nucleons in clusters with 26 < A < 50.
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As shown in Fig. 5.4, clusters with mass number (21 < A < 25) appear strongly at
density 0.023 nucleon/fm® and remain dominant up to 0.1 nucleon/fm*® where their
contribution reaches almost 100% when only clusters up to A= 25 are included in the
calculation. However, when clusters up to A = 50 are included the fraction of
nucleons in these clusters reaches its maximum of 18% at 0.026 nucleon/fm? before
dying gradually due to the formation of clusters with mass number (A > 25) which

start to appear at 0.011 nucleon/fm? as displayed in Fig. 5.5.a.

At 0.062 nucleon/fm3, clusters with mass number (46 <A < 50) would have
substantial contributions in symmetric nuclear matter and almost 40% of the system
would consist of these clusters at 0.09 - 0.1 nucleon/fm3. In particular, we note that
the percentage of nucleons in this group of the heaviest clusters is well below 100%
when we included the clusters with (A > 25) in the calculation. The remaining
bound nucleons are distributed among the different clusters in the range (26 < A <
50). By including clusters up to A = 50 the heaviest clusters have a contribution of
only 45% which is about 2.5% per cluster type .This behaviour is more realistic than
what was obtained from the calculations with A up to 25 only, where the contribution
of the heaviest clusters (21 < A < 25) reaches almost 100% as can be seen from

Fig 5.4 that means each cluster type had an unrealistically large contribution of 20%.

Deuterons are the two body correlations, so they are easily formed. So they are the
dominant clusters at very low density but not at very low temperatures. In symmetric

nuclear matter in the very low density region a large portion of nucleons are bound in
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alpha particles at T < 2MeV as illustrated in Fig. 5.6. At higher temperatures (T >
4MeV), the deuterons become dominant but at T = 3MeV alphas still have a
significant contribution at low densities as compared with deuterons. In particular, at
very low temperature and density the cluster fractions are simply determined by the
binding energies and alphas have a high binding energy per nucleon compared with

other light clusters [39].
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Fig. 5.6: Deuteron and alphas fractions in symmetric nuclear matter at
T=2MeV, 3 MeV and 4 MeV.

5.2.3 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T =6 MeV

The composition of clustered symmetric nuclear matter at T = 6 MeV is shown in
Fig. 5.7 and Fig. 5.8 which give the fraction of nucleons bound in each type of
clusters as a function of total density. For very low densities up to 0.02 nucleon/fm?

the composition of symmetric nuclear matter is still the same even if we included a
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larger number of heavier clusters in the calculations. The significant differences occur
in the fractions of clusters with mass number (A > 16), the fraction of nucleons in
clusters with mass number (16 <A < 20) reaches 32% around 0.05
nucleon/fm® when we included only clusters up to A = 25 but with including the 89

clusters the fraction is reduced to 24% around 0.041 nucleon/fm2.

On the other hand, clusters with mass number (21 <A < 25) become dominant
after 0.05 nucleon/fm? in the first case when clusters up to A = 25 only were included
in the symmetric nuclear matter. Whereas in the second case of including heavier
clusters up to A = 50 the fraction of clusters with (21 < A < 25) along the whole
density range does not exceed 21% and their contribution gradually decreases beyond

0.06 nucleon/fm?,
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Fig. 5.7: Clustered symmetric nuclear matter composition at T = 6 MeV when the
calculations included clusters up to A = 25 only.
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When we included the 89 clusters in symmetric nuclear matter, the fraction of
nucleons in each collection of clusters is shown in Fig. 5.8. Clusters with mass
number up to 10 are dominant at p < 0.02 nucleon/fm*. Whereas clusters with mass
number (11 < A < 20) appear strongly with fraction exceeds 50% at density range
0.026 — 0.049 nucleon/fm3. However, 42% of nucleons are concentrated in clusters
with mass number (21 <A < 30) around 0.065 nucleon/fm®. The remaining

clusters strongly appear beyond 0.06 nucleon/fm® with fraction reaches to (29 —

65)%.
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Fig. 5.8: Clustered symmetric nuclear matter composition at T = 6 MeV. The left part
(@) represents the fraction of nucleons in clusters up to A = 25 when the clusters up to
A =50 were included in the calculations, whereas the right part (b) represents the
fraction of nucleons in clusters 26 < A < 50.
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5.2.4 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 8 MeV

The composition of symmetric nuclear matter as a function of density at T = 8 MeV
is shown in Fig. 5.9 and Fig. 5.10. Clusters with mass number (2 < A < 10) are the
dominant till 0.038 nucleon/fm*® in symmetric nuclear matter regardless of other
clusters that were included with fraction (90 — 50)%. Moreover, the fraction of
nucleons in clusters with mass number (11 < A < 15) has slight change between
the first case of including clusters up to A = 25 and the second one of including

clusters up to A =50 in symmetric nuclear matter.
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Fig. 5.9: Clustered symmetric nuclear matter composition at T = 8 MeV when the
calculations included clusters up to A = 25 only.
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The significant differences occur in the fractions of clusters with mass number (A >
16), the fraction of nucleons in clusters with mass number (16 < A < 20) reaches
32% around 0.08 nucleon/fm? if clusters up to A = 25 were included only in the
calculations but with including the 89 clusters the fraction is reduced to 25% around
0.07 nucleon/fm3. On the other hand, The fraction of nucleons in clusters with mass
number (21 < A < 25) reaches 45% beyond 0.09 nucleon/fm? in the first case of
including clusters up to A = 25 only. Whereas if we included more clusters up to A

=50 in symmetric nuclear matter its fraction along the density range does not exceed

23%.
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Fig. 5.10: Clustered symmetric nuclear matter composition at T = 8 MeV. The left
part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters
up to A = 50 were included in the calculations, whereas the right part (b) represents
the fraction of nucleons in clusters 26 < A < 50.
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In Fig. 5.10 we show the fraction of nucleons in each range of cluster size when we
included the 89 clusters in our calculations for the composition of symmetric nuclear
matter. At p = 0.04 nucleon/fm®, the nucleons start gathering in clusters with mass
number (A = 26) but their contribution remains small which reaches 42% at p = 0.1
nucleon/fm2. So clusters with mass number up to A = 25 stays dominant up to p = 0.1
nucleon/fm? and they contribute about 76% of the nuclear matter at 0.08 nucleon/fm?.
These clusters appear strongly at p =>0.09 nucleon/fm3® where the fraction of
nucleons that concentrate in clusters with mass number (26 < A < 30) reaches 19%.
While it reaches 18% in clusters with mass number (31 < A < 40) and only 4% of

nucleons were found in the heavier clusters (41 < A < 50).

5.2.5 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 10 MeV

Clustered symmetric nuclear matter composition at T = 10 MeV is identified by
Fig. 5.11 and Fig. 5.12. The fraction of nucleons in clusters would have soft change
beyond 0.07 nucleon/fm® because of the formation of clusters with mass number
(A = 26) when we included clusters up to A = 50 in the calculations. In fact, the
fraction of heavier clusters (4 > 26) does not exceed 7% up to 0.1 nucleon/fm3. On
the other hand, the dominant clusters at this temperature if we included the 89
clusters are clusters with mass number (2 < A < 30) and the remaining ones would

have negligible contribution reaches just 2% of symmetric nuclear matter. In
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particular, a large fraction of nucleons would bound in clusters with mass number
(A < 10) at density less than 0.063 nucleon/fm®. Beyond this density clusters with

mass number (11 < A < 20) become the dominant.

1 T T T T
Including clusters up to A =25

O O clusters 2<A<S

+ clusters 6 <A <10
© clusters 11 <A <15
0.6 [ o) X clusters 16 <A <20
O  clusters 21 <A <25

0.8 O

TR

fraction of nucleons in clusters

Fig. 5.11: Clustered symmetric nuclear matter composition at T = 10 MeV when the
calculations included clusters up to A = 25 only.

Clusters with mass number (2 < A < 5) are dominant till 0.031 nucleon/fm? even if
heavier clusters up to A =50 were included. These fractions reach 89% around 0.007
nucleon/fm? to 48% around 0.03 nucleon/fm3. However, Clusters with mass number
(6 <A < 10) appear significantly in the density range 0.037 — 0.066 nucleon/fm?
with their contribution reaching 56%. On the other hand, the fraction of nucleons in
clusters with mass number (11 <A < 25) has slightly changed when heavier

clusters (A > 26) were included in symmetric nuclear matter. Finally, we can note
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that the fractions of nucleons which concentrated in clusters (A > 26) do not exceed

5% along the whole density range up to 0.1 nucleon/fm?3,
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Fig. 5.12: Clustered symmetric nuclear matter composition at T = 10 MeV. The left
part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters
up to A = 50 were included in the calculations, whereas the right part (b) represents
the fraction of nucleons in clusters 26 < A < 50.

5.2.6 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T =12 MeV

The fraction of nucleons in clusters as a function of density at T = 12 MeV is shown

in Fig. 5.13 and Fig. 5.14. Clusters with mass number (2 < A < 5) are dominant till

0.047 nucleon/fm® where their contribution has a maximum of about 88% of the

nuclear matter at p = 0.006 nucleon/fm? and falls down to about 45% at p = 0.047

nucleon/fm® when the next group of clusters starts to dominate. Whereas the nucleons

would bound at 0.029 nucleon/fm? to form clusters with mass number (6 < 4 < 10),
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and almost 55% of nucleons concentrate in these clusters around 0.064 nucleon/fm?®

before their gradual disappearance. On the other hand, clusters with mass number
(11 < A < 15) appeared beyond 0.04 nucleon/fm?. Their fraction is increasing with

density and reaches 36% as maximum at 0.1 nucleon/fm?®.
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Fig. 5.13: Clustered symmetric nuclear matter composition at T = 12 MeV when the
calculations included clusters up to A = 25 only.

Along the whole density range, the largest fraction of nucleons that have gathered to
form clusters with mass number (16 < A < 20) is 12%. While clusters with mass
number (21 < A < 25) contribution may be negligible as its fraction does not
exceed 3%. Clusters with mass number (A = 26) start to form beyond 0.06
nucleon/fm® but their fraction does not exceed 0.7%, so we can neglect their

contributions in symmetric nuclear matter. Hence the composition of symmetric
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nuclear matter at T = 12 MeV does not change even if we included more and more

heavier clusters in the calculations.
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Fig. 5.14: Clustered symmetric nuclear matter composition at T = 12 MeV. The left
part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters
up to A = 50 were included in the calculations, whereas the right part (b) represents
the fraction of nucleons in clusters 26 < A < 50.
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In general, we can conclude that the cluster distribution depends on the symmetric
nuclear matter temperature and density. At fixed temperature, the symmetric nuclear
matter composition changes with increasing the total density such that correlations
between a larger numbers of nucleons become significant. As a consequence, the
fractions of clusters with smaller mass number decrease and the formation of heavier

clusters increases as density increases.

On the other hand, the heavier clusters appear at higher density with increasing the
symmetric nuclear matter temperature. However, the fractions of heavy clusters
become negligible at high temperatures T > 10 MeV because of the lag in the lighter

clusters dissolution.

Clusters with mass number up to 50 play a significant contribution in symmetric
nuclear matter composition at T < 6 MeV while at T =8 MeV only clusters up to A =
40 have a significant presence. At T =10 MeV only clusters with mass number up to
30 are present while at T =12 MeV only clusters with mass number up to 15 have a

substantial contribution in symmetric nuclear matter.

Finally, including heavier clusters makes the study more reliable where the nucleons

are distributed among different groups of clusters not in the heaviest one only.
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CHAPTER 6
RESULTS AND CONCLUSION

In this chapter, we will show and discuss the effect of including clusters with mass
number up to A = 50 on the equation of state of clustered symmetric nuclear matter.
In the previous chapters, the composition of clustered symmetric nuclear matter was
determined, and here we will show the effect of including these clusters on the

clustered symmetric nuclear matter critical point.

6.1 CLUSTERED SYMMETRIC NUCLEAR MATTER EQUATION OF

STATE

The pressure of clustered symmetric nuclear matter contains contributions from all its

contents including the free nucleons and the clusters.

P = Pfree nucleons + Pclusters (6-1)

Where Prree nucieons 1S the pressure due to the free nucleons which is given by Eg. 2.3

for an ideal Fermi gas of nucleons. Whereas, P.,sters 1S the sum of all cluster
pressures. Each cluster type contributes a pressure which is given by Eq. 2.3 for an
ideal Fermi gas if the cluster is fermionic or by Eq. 2.6 for an ideal Bose gas if the

cluster is bosonic.
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As illustrated in chapter 5, we must include the clusters in low and intermediate
density symmetric nuclear matter and we cannot ignore them. Fig. 6.1 shows the
differences between the equation of state of low density symmetric nuclear matter in
different treatments; ideal gas of nucleons, nucleonic gas with Skyrme interactions

and clustered symmetric nuclear matter treated by using modified NSE model — with

clusters up to A = 50.

%1072
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T =4 MeV

157 _:': """" Ideal gas

— Nucleonic gas with Skyrme interactions
— — Clustered symmetric nuclear matter

] 0.002 0004 0006 0008 0.01 0012 0014 0016 0018 0.02

e 3
) nucleon/fin
F total ( }

Fig. 6.1: Pressure isotherm at T = 4 MeV in different treatments; ideal gas of
nucleons, nucleonic gas with Skyrme interactions and clustered symmetric
nuclear matter with clusters up to A = 50.

The ideal fermi gas pressure increases monotonically with density. It is clear that the
pressure of the ideal gas of nucleons and the pressure of Skyrme interaction nucleonic
gas agree at extremely low densities as illustrated in Fig. 6.1. Whereas, clustered

symmetric nuclear matter pressure isotherm has a different behaviour at low densities



66

due to the presence of clusters and their interaction with free nucleons. The
interacting nucleonic gas pressure is larger than the pressure of clustered symmetric
nuclear matter (due to the lower pressure of the bosonic clusters in the latter case),
otherwise they have a similar behaviour increasing gradually with density up to a
density of about 0.005 nucleon/fm®. After that they both decrease with the pressure of

the nucleonic gas dropping much faster.

We can note that clustered symmetric nuclear matter pressure isotherm after 0.005
nucleon/fm? decreases with increasing density up to 0.014 nucleon/fm? before it starts
increasing again with density. Hence its behaviour is the same as nucleonic gas with
Skyrme interaction pressure isotherm behaviour which is discussed in chapter 3. We
will examine the effect of including clusters in symmetric nuclear matter on its
equation of state by determining the critical point for clustered symmetric nuclear
matter ( Teriticar » Peritical » Periticar ) 1N the next section and comparing it with other

studies.

6.2 COMPARISON BETWEEN THE RESULTS OF THE PRESENT WORK

AND PREVIOUS STUDIES

Clustered symmetric nuclear matter pressure isotherms were drawn by using Eq. 6.1.
We firstly include clusters with mass number up to A = 25 only before extending our

calculation by including the remaining clusters with mass number up to A = 50.
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Fig. 6.2: Clustered symmetric nuclear matter pressure isotherms at three different
temperatures; blue-dashed lines give pressure isotherms when only clusters up to A =
25 are included in the calculation, whereas the red-solid lines give pressure isotherms
when clusters up to A = 50 are included in the calculation.

The pressure for clustered symmetric nuclear matter increases as temperature
increases at specific density. However, it has lower values at high densities and fixed
temperature when more and more clusters are included in the calculation as illustrated
in Fig. 6.2 especially at low temperatures when the heavier clusters have significant
contributions in symmetric nuclear matter. Regardless of the number of clusters
included in the calculations the pressure isotherms have the same general behaviour
similar to a van der Waals gas: the pressure initially increases with increasing density
up to a certain value before it starts decreasing as the density increases and them

finally increasing again as the density increases further).
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Hence symmetric nuclear matter pressure isotherm does not change if we included
clusters up to A = 50 at low densities but differs at higher densities due to the
formation of heavier clusters, especially at low temperatures. For example, the
change in pressure isotherm between the nuclear matter including clusters up to A =
25 and one with clusters up to A = 50 appears beyond 0.018 nucleon/fm® when
heavier clusters start to form. At 0.1 nucleon/ fm? the pressure is reduced by about
0.008 MeV.fm® at T = 4 MeV and with same amount at T = 8 MeV where it is
reduced from 0.078 — 0.07 MeV.fm? at 0.1 nucleon/fm3. At T = 8 MeV the changes
appear beyond 0.06 nucleon/fm? between the two cases. On the other hand, it is not
affected at high temperatures (T = 12MeV) even at higher densities till 0.1

nucleon/fm® by including clusters up to A = 50. In general, the effect of adding

heavier clusters to the calculations is important at lower temperatures.

The pressure isotherm at T = 12 MeV does not change by including the A > 25
clusters since its composition has a significant contribution from clusters with mass
number up to A = 15 only. We also note that the critical point locates around T = 12
MeV. After studying the behaviour of pressure isotherms near T = 12 MeV, the
critical temperature for clustered symmetric nuclear matter is 12.5 MeV where the
pressure isotherm has one inflection point. Above this temperature clustered
symmetric nuclear matter pressure isotherm increases as density increases and one

fluid phase exists as shown in Fig. 6.3.
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Fig. 6.3: Clustered symmetric nuclear matter pressure isotherm at different

temperatures including the critical one.
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0.1

Table 6.1 summarizes the parameters of the critical point obtained in the present work

and in other studies. In most cases, including clusters tends to lower the critical

temperature. The increase in Teriticat With the inclusion of clusters for the case of RMF

is attributed by Typel et al to the overestimation of deuteron production (see Fig. 5.1).

The main factor that makes our result change slightly from [19] is the differences

between our Mott densities values and the ones that were used in [19].



Table 6.1: Critical point values obtained in the present work and in other studies.
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Tcritical Pcritical Pcritical
(MeV) (nucleon/fm®) | (MeV.fm?3)
The present work
12.5 0.0574 0.2211
< Including clusters with )
mass numberuptoA = 50
The present work
17.32 0.058 0.2759
(Nucleons with Skyrme)
interactions
W. Awad [19]
11.8 0.06 0.194
( Including clusters with )
mass numberuptoA = 25
Typel et al [7]
13.72 0.0452 0.1781
( RMF without clusters )
Typel et al [7]
RMF with light clusters 1512 0.1018 0.9029
( [d,t,hand «] )
Typel et al [7]
121 - -

QS with light clusters
< [d,t,h and «] )
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6.3 CONCLUSION

Clusters with mass number up to A = 50 must be included in the equation of state of
low and intermediate density symmetric nuclear matter especially at low temperatures
where these clusters play a significant role in symmetric nuclear matter composition.
The cluster distribution depends on both the temperature and density of symmetric
nuclear matter. The light clusters up to A = 4 are dominant at very low densities
whereas the heavier clusters appear at the higher densities where many-body
correlations become significant. However, as temperature increases, the presence of
the heavier clusters decreases gradually. At T = 12 MeV, only clusters up to A= 15

have a significant contribution.

In general, including clusters with mass number ( A > 4 ) in low density symmetric
nuclear matter reduces low density symmetric nuclear matter critical temperature by
several MeVs in comparison with that obtained in [7, 14] where the clusters were not

taken into account or just included light clusters with mass number up to A = 4.

In this work, we determined the composition of low and intermediate density
symmetric nuclear matter by including light and medium clusters with mass number
up to A = 50. The interactions between nucleons are taken into account only through
cluster formation. To enhance this work, density-dependent effective masses of
nucleons and clusters can be considered as medium modifications. Here, we dealt

with Zero CM momentum clusters, future work can take into account CM momentum
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of clusters which affects the binding energy of clusters and increase their Mott-

densities.

This work can be used in astrophysical applications such as supernova explosions and
to examine the early evolution of the universe by cosmologists. It is also important
for the description of heavy ion collisions (HIC) in which light and medium nuclear

clusters are formed.
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APPENDIX A

ENTROPY OF CLUSTERED SYMMETRIC NUCLEAR MATTER

Typel et al [7] found that the entropy per nucleon for symmetric nuclear matter with
light clusters up to A = 4 decreases with increasing density as illustrated in Fig. A.1
except for a small region at low densities and low temperatures where entropy
increases as the clusters dissolve into free protons and neutrons in the surrounding
medium. This made Typel et al conclude that the formation of clusters reduces the
entropy per nucleon as compared to nuclear matter without clusters that is, consisting
only of free protons and neutrons. We will show that this does not contradict with the

Second Law of Thermodynamics.
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Fig. A.1: Symmetric nuclear matter entropy per nucleon Sa as a function of the total density
n for different temperatures T. thick solid lines represent the result with including light
clusters treated using RMF whereas the NSE calculation with light clusters but without
considering their dissolution is represented by thin solid lines.
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Typel et al are comparing between clustered symmetric nuclear matter and nuclear
matter without clusters at constant temperature. What we want to emphasize is that it
is not meaningful to compare at the same T, at least as far as the Second Law of
thermodynamics is concerned.

The difference between the entropy of symmetric nuclear matter consisting of protons
and neutrons only) and that of clustered symmetric nuclear matter appears strongly at
low temperatures. We first note that the energy per nucleon for symmetric nuclear
matter without clusters must remain the same after the formation of clusters due to
energy conservation. As an example we evaluate the energy per nucleon for clustered
symmetric nuclear matter at T = 6 MeV and p = 0.001 nucleon/fm® by using the

following expression [23]:

E_ 3 fS/Z(Zfree) &fs/z(lc) _ Bfc
N 2 kB T [ffree nucleons fs/z(zfree) A, f3/2(Zc) A, A.l

P free nucleons

Where frree nucieons = is free nucleons fraction density, p;otq; IS given

Ptotal

by Eq. 4.3 with including light clusters up to A = 4 only, f. = —£< is the cluster

Ptotal

fraction density, p. is given by Eq. 4.4, A, is the cluster mass number and B, is the
cluster binding energy which is given by Eq. 4.6. The functions f,(z) are defined by

[23],

z? z3
fv(Z):Zi 2_v+ 3_vi A2
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where the upper sign is used for bosonic clusters and the lower sign is used for free
nucleons and fermionic clusters, the fugacity z = e®/¥8T) and p is the chemical
potential. The fugacity of cluster C is denoted by z. and the fugacity of free nucleons
is denoted by z:... Finally, the chemical potentials of the clusters are given by
Eq.4.2 while for the free nucleons the chemical potential is given by Eq.2.2 in the

case of clustered nuclear matter.

From Eq. A.1 we find that the energy per nucleon % (at T= 6 MeV and p = 0.001

nucleon/fm®) = 4.2859 MeV for clustered symmetric nuclear matter. We mentioned
above that the energy per nucleon for nuclear matter must be the same before forming
clusters and after that. So the temperature for clustered symmetric nuclear matter will
be higher than the corresponding temperature in the absence of clusters due to the
absence of the cluster binding energy in the latter case. The energy per nucleon at low
temperatures for symmetric nuclear matter with no clusters is given by the first term

of Eg. A.L.

fs/z(zfree) A4

E 3
—==kgT
N 2 VB ffree nucleons f3/2(zfree)

On the other hand, nucleons in fact interact with each other by nuclear force. We used
the Skyrme interaction which is mentioned in chapter 3 as a simple parameterization

to describe the interactions between the nucleons. So the chemical potential for free
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nucleons in the case of nuclear matter without clusters is given by Eq. 3.13, which

was used in £, (zfree )-

So to keep the energy per nucleon conserved, the temperature of symmetric nuclear
matter without clusters must be 2.784 MeV rather than 6 MeV. When the clusters
form the excess energy released by the binding of the nucleons into the clusters raises

the temperature, increasing it from 2.784 MeV to 6 MeV.

We estimated the entropy for symmetric nuclear matter with no clusters (free

nucleons) by using the following expression [40]:

= o An [k dk (1= In@~f) + flnf] A5

where f = {exp(B [¢ — pu]) + 1}71, ¢ is given by Eq. 3.12 and u is given by Eq.

3.13.

For clustered symmetric nuclear matter entropy we used Fig. A.1 which is taken from
[7]. Table A.1 summarizes the differences in entropies per nucleon for both

symmetric nuclear matter with clusters and without clusters (free nucleons).
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Table A.1: Entropy per nucleon S/N for symmetric nuclear matter with no clusters
and clustered symmetric nuclear matter at 0.001 nucleon/fm® and two different

temperatures.

Symmetric nuclear matter | Clustered symmetric nuclear
( free nucleons) matter
Entropy S/N [kg] Entropy S/N [kg]
T =2.784 MeV 4.0116 2.69
T =6 MeV 5.1510 5.0

It is clear that the temperature of nuclear matter consisting of only nucleons without
clusters increases from T = 2.784 MeV to T = 6 MeV when clusters are formed.
Moreover, the entropy per nucleon increases from 4.0116 kg to 5.0 k as required by
the second law of thermodynamics. However, when we compare nuclear matter
without clusters with nuclear matter containing clusters at the same temperature the

one with clusters has lower entropy.
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