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ABSTRACT 

Nuclear matter at low and intermediate density and moderate temperature minimizes 

its energy by forming nuclear clusters. Most previous theoretical investigations 

ignored the formation of the heavy clusters and focused on light clusters with mass 

number up to A = 4. In this work, clusters with mass number up to A = 50 are 

included in nuclear matter and treated by the Nuclear Statistical Equilibrium model    

(NSE) which states that clusters are in chemical equilibrium with the free nucleons in 

the surrounding vapour. The Nuclear Statistical Equilibrium (NSE) model was 

modified by using density-dependent binding energies of clusters where the clusters’ 

binding energies decrease as the surrounding medium density increases. In fact, 

clusters undergo the Mott transition and get dissolved as the density of nuclear matter 

increases due to the medium effects. The Pauli Blocking is found to be the prominent 

factor that affects clusters’ binding energies. It was found that heavier clusters play a 

significant role in low and intermediate density symmetric nuclear matter 

composition and should be included in the equation of state (EoS) to make the study 

more realistic. Finally, these clusters reduce the critical temperature by several MeVs. 
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 ملخص

مت اهتنوية. وين الاعلى تقليل طاقتها بتكدرجات الحرارة المتوسطة المادة النووية ذات الكثافة المنخفضة وتعمل 

 الذي لا د الكتليعدبدراسة المادة النووية قليلة الكثافة المحتوية على الأنوية ذات الالسابقة  ساتمعظم الدرا

ى خمسين لعتوي نوية الأثقل التي تحفقمنا بالأخذ بالحسبان تكون الأ ,ةأما في هذه الدراس يتجاوز الأربعة.

 ن كيميائياتزا جودالتوازن الإحصائي النووي الذي يفترض وعالجناها باستخدام نموذج نيوكليونا  على الأكثر و

ة ولة المعزلعاديالنيوكليونات الحرة في الوسط المحيط. تختلف خصائص هذه الأنوية عن الأنوية ابين الأنوية و

ي الوسط فإلى أن تذوب  ربطها كلما ازدادت كثافة المحيطبها حيث تقل طاقة  تأثيرات الوسط المحيط بسبب

ية. ربط للأنوقة العندما تؤول طاقة ربطها إلى الصفر. يعد مبدأ باولي من أكثر العوامل تأثيرا  على طا المحيط

لى لمعتمدة عوية الذلك قمنا بإدخال تعديل على نموذج التوازن الإحصائي النووي حيث استخدمنا طاقة الربط للأن

درجات  صوصا  عندوية خ مهما  في تركيب المادة النوكثافة الوسط المحيط. لقد وُجد أن الأنوية الثقيلة تلعب دورا  

الحالة  عادلةإدراجها في م واجد بنسب لا يمكن إهمالها ولذلك فمن الضروريالحرارة المنخفضة بحيث أنها تت

رة الحرجة رجة الحراقلل دللمادة النووية. في النهاية، وجود هذه الأنوية في دراسة المادة النووية قليلة الكثافة يُ 

 نفصلة.كليونات موين نمللمادة النووية مقارنة بمثيلتها التي يتم احتسابها بافتراض أن المادة النووية تتكون فقط 
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CHAPTER 1 

INTRODUCTION 

The composition and the equation of state (EoS) of nuclear matter has been an 

important subject of numerous investigations in nuclear physics. In the past, scientists 

used to think that nuclear matter consists of only free protons and neutrons regardless 

of its density. However, at sub-saturation densities, correlations (clusters) are formed 

and nuclear matter becomes inhomogeneous [1-9]. In particular, this is important for 

nuclear matter at sub-saturation density which exists in the crust of neutron stars and 

in the envelope of core-collapse supernovae [10-12] and which gains the attention of 

cosmologists and astronomers.  

These bound states (clusters) change the composition of nuclear matter and affect its 

thermodynamical behaviour. The occurrence of clusters also minimizes nuclear 

matter energy [7]. In general, the formation of clusters varies with nuclear matter 

density and temperature whereas clusters dissolve with increasing density due to the 

decrease in their binding energies.  

Pauli Blocking is one of the main medium effects on the cluster properties as it 

causes its binding energy to decrease as the medium density increases [13]. At a 

certain density called the Mott density, the binding energy vanishes and the cluster 

dissolves and its nucleons become free. Hence the cluster’s binding energy has to 
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take density-dependent form to include the medium effects. That is why the 

clustering is limited to low and intermediate densities. 

Röpke et al studied a homogeneous system of free nucleons and composite particles 

which are states of bound nucleons and discussed its thermodynamic properties in 

1982 [1]. They studied especially the abundance of deuterons immersed in a medium 

of free nucleons by using the Bethe-Goldstone equation for thermodynamic Green 

functions. After one year, Röpke et al extended their work by including helions, 

tritons and alpha particles as well as deuterons and included medium effects in the 

equation of state [2]. Helions are the nuclei of 3He and consist of two protons and one 

neutron while the tritons are the nuclei of 3H and consist of two neutrons and one 

proton. However, they ignored the difference in binding energy between helion and 

triton. They concluded that the cluster formation leads to a reduction in the critical 

temperature of nuclear matter by 2.5 MeV. 

The stability of hot nuclei immersed in a vapour of free nucleons was studied by 

Levit and Bonche in 1985 [14] by using an equation of state of nuclear matter derived 

on the basis of the Hartree-Fock approximation with an effective nucleon-nucleon 

interaction of the Skyrme type. They emphasized that such nuclei cannot exist above 

a certain temperature which they called the limiting temperature. The limiting 

temperature depends strongly on the properties of the nuclear matter contained in its 

equation of state, and also on the surface tension of the nuclei.  
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Levit and Bonche’s equation of state was generalized by Jaqaman to describe 

asymmetric nuclear matter [3]. In another study [15], Jaqaman improved the equation 

of state in [3] by taking into account the density-dependent nucleonic effective mass 

and the vapour’s electric charge and showed that the vapour electric charge raises the 

limiting temperatures. 

Light clusters with mass number up to A = 4 were included by Beyer et al [4] in a 

study which depends on the statistical model and the Hartee-Fock (HF) 

approximation for the quasi-particle energy. They concluded that the composition of 

nuclear matter with light clusters at finite temperatures varies with nuclear matter 

temperature, density and CM momentum of clusters. 

Horowitz and Schwenck constructed a low density nuclear matter equation of state in 

2006 by including protons, neutrons and alpha particles [6]. Their work was based on 

the nuclear statistical equilibrium model and the virial expansion. They concluded 

that alpha particles form as the nuclear matter density increases, which leads to a 

significant reduction of the pressure of low density nuclear matter.  

In 2008, the appearance of light clusters with mass number up to A = 4 in core-

collapse supernova was studied by Sumiyoshi and Röpke by using a quantum 

statistical approach. They found that deuterons, tritons, helions and alphas appear 

strongly in a wide region from the surface of the proto-neutron star which is a tiny 

survivor star after supernova explosions [16].  
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The basic properties of light clusters in hot and dense nuclear matter were studied by 

Röpke in 2009 [13] by using Green’s function at different limits. At first, at low 

density limit where nuclear statistical (NSE) and virial models are valid. Secondly, at 

high density limit where relativistic mean field model (RMF) is valid. He included 

clusters with mass number up to A = 4 and ignored high density region as 

temperature goes down because he predicted that heavier clusters with mass number  

(A > 4) will appear there and become more important. He noticed that results deviate 

from nuclear statistical equilibrium (NSE) model at densities that exceed 

10−4  nucleon/fm3 due to the medium modification effects.  

Heckel et al included clusters with mass number up to A ≤ 13 in the equation of state 

(EoS) of low density supernova matter and determined its composition [17]. They 

found that these clusters lower the critical temperature. 

Typel et al [7] investigated the composition of nuclear matter at finite density and 

temperature (T ≤ 20) including light clusters with mass number up to A = 4 by using 

a microscopic quantum statistical (QS) approach and a generalized relativistic mean 

field (RMF) model. Both approaches give the same results as the nuclear statistical 

equilibrium (NSE) model in the low density limit as shown in the study. They 

modified the properties of the clusters by including the medium effects on their 

binding energies. This eventually leads to the dissolution of the clusters due to the 

reduction in their binding energies as the medium density increases. Cluster 

dissolution occurs when the binding energy goes to zero due to the medium effect of 
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Pauli Blocking. This dissolution is known as the Mott transition. They found that the 

composition of nuclear matter with clusters varies as its density and temperature 

changes. They found that alpha particles are dominant at low temperatures                

(T ≤ 2MeV) and low densities (less than 10−2   nucleon/fm3) but at higher 

temperatures the deuterons are dominant at these densities. They also discussed the 

effect of clusters formation on the liquid-gas phase transition and other 

thermodynamical quantities. However, they mentioned that the formation of clusters 

reduces the entropy per nucleon of symmetric nuclear matter as compared to pure 

neutron-proton matter without clusters. This point is explained in Appendix A to 

clarify that it does not conflict with the Second Law of Thermodynamics.  

The limiting temperature for hot nuclei which are in thermal, chemical and 

mechanical equilibrium with the surrounding vapour including clusters was studied 

by Talahmeh and Jaqaman [18]. They included clusters with mass number up to A = 

4 in the vapour and found that the presence of these clusters reduced the limiting 

temperature by several MeVs. However, W. Awad study [19] included clusters with 

mass number up to A = 25 in low density symmetric nuclear matter and emphasized 

that these clusters must be considered in low density symmetric nuclear matter 

equation of state as their presence reduces the critical temperature of the system. 

There has also been definite experimental evidence for an abundance of light clusters 

in nuclear matter at low density and moderate temperatures [20-22]. In general they 

this was observed in the abundant emission of light particles in low energy heavy-ion 



6 
 

 
 

collisions. For example, [22] presented a first experimental determination of in 

medium cluster binding energies and Mott points for light clusters (d, t, h and 𝛼) in 

low density nuclear matter produced in collisions of 40Ar and 64Zn projectiles with 

112Sn and 124Sn target nuclei. Where the kinetic energy per nucleon of projectile 

nuclei is 47 MeV. Their results were in good agreement with those predicted by 

recent theoretical predictions based upon the implementation of Pauli blocking effects 

in a quantum statistical approach in [7]. 

In the present thesis, we consider the formation of light and medium clusters with 

mass number up to A = 50 in the nuclear vapour by using a modified form of the 

nuclear statistical equilibrium model (NSE) that includes the medium modification of 

the clusters properties. We also examine how the value of the critical temperature      

(𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is affected by the inclusion of clusters with mass number up to A = 50 in 

the vapour state of nuclear matter at low and intermediate densities up to 𝜌 = 0.1 

nucleon/fm3. 

In Chapter 2, we describe the equation of state of ideal quantum gases. In Chapter 3, 

we construct the equation of state of nuclear matter consisting of nucleons interacting 

via the Skyrme effective interaction and study its behaviour at different temperatures 

to determine its critical point. In Chapter 4, we review various theoretical 

investigations of clustered nuclear matter and focus on the Nuclear Statistical 

Equilibrium model. In Chapter 5, we determine the composition of clustered 

symmetric nuclear matter by including clusters with mass number up to A = 50 at 
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different temperatures. Finally, we discuss our results and present our conclusions in 

Chapter 6.   
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CHAPTER 2 

EQUATION OF STATE OF IDEAL QUANTUM GASES 

The ideal quantum gas can be defined as a system of indistinguishable non-

interacting particles that obey Fermi-Dirac or Bose-Einstein statistics. The equation 

of state is a thermodynamic mathematical relation which relates the system density to 

the other main system variables, like its pressure, volume and temperature. Each 

system has its own fundamental characteristic equation of state [23]. 

In this chapter, we will discuss an infinite system of non-interacting fermions and 

bosons respectively, and mention the equation of state for them to use it later in 

constructing the clustered nuclear matter equation of state. 

2.1 IDEAL FERMI GAS EQUATION OF STATE 

The ideal Fermi gas is a physical system consisting of a large number of non-

interacting identical fermions. It is the quantum mechanical version of an ideal gas. 

Fermions are particles whose spin quantum number is half an integer. These particles 

follow Fermi-Dirac statistics where it is prohibited that two identical fermions with 

same quantum numbers occupy the same quantum state, this is known as the Pauli 

Exclusion Principle [24]. 
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Protons and neutrons are fermions, they differ in their electromagnetic properties 

because of the positive charge that the proton has. They both are treated in the same 

way if the Coulomb force interactions between protons are switched off. So we can 

say that the proton and neutron are two states of the same particle called the nucleon 

with mass nearly 940 MeV/c2. A system of nucleons at low densities can be classified 

as an ideal Fermi gas. 

The Fermi-Dirac distribution function 
1

𝑒𝛽(𝜀𝑖− 𝜇)+1
 for a system consists of N identical 

fermions with single fermion energies of  𝜀𝑖 satisfies the relation [23]: 

                                                
𝑁

𝑔
 =  ∑ 𝑛𝑖 =  ∑

1

𝑒𝛽(𝜀𝑖− 𝜇) + 1
𝑖𝑖

                                      (2.1) 

where 𝑔 is the spin-isospin degeneracy factor that arises from the internal structure of 

particles such as spin s and isospin 𝐼 ( 𝑔 = (2𝑠 + 1 )(2𝐼 + 1)), 𝑛𝑖 is the probability 

that the ith energy level is occupied by a single fermion at absolute temperature T, 

𝜇  is the fermionic chemical potential which we will discuss later in this chapter and 

𝛽 =  1 𝑘𝐵𝑇⁄  where 𝑘𝐵 is the Boltzmann constant. 

We can use energy units instead of Kelvins for the temperature by multiplying the 

absolute temperature by Boltzmann’s constant: 

𝑘𝐵 = 8.617 ×  10−11 MeV Kelvin⁄  
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In these units a temperature of 1 MeV is equivalent to T = ( 1.16 × 1010) Kelvin in 

SI units. From now on, I will use T in MeV instead of 𝑘𝐵𝑇, and it will have energy 

units.  

The equation of state for an ideal gas of non-interacting identical fermions can be 

expressed as an equation for the chemical potential 𝜇(𝑇, 𝜌 ) or the pressure 𝑃(𝑇, 𝜌 ) 

[3, 18]: 

                                 𝜇(𝑇, 𝜌 ) = 𝑇 [ln (
𝜆𝑇

3  𝜌

𝑔
) + ∑ 𝑏𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]                               (2.2) 

                                𝑃(𝑇, 𝜌 ) = 𝑇 𝜌 [1 +  ∑
𝑛

𝑛 + 1
 𝑏𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]                                (2.3) 

where 𝜌 is the number density of the fermions, 𝜆𝑇 =  (
2𝜋ћ2

𝑚 𝑇
)

1

2
 is the thermal 

wavelength of a fermion which is roughly the mean de Broglie wavelength of the gas 

particles in an ideal gas at the specified temperature T, 𝑔 is the spin-isospin 

degeneracy factor (g = 4 for a gas of nucleons). The coefficients 𝑏𝑛 up to n = 6 were 

evaluated in [18, 25] and are listed in Table 2.1. These coefficients reflect the higher 

order degeneracy corrections that significantly modify the chemical potential and 

pressure of an ideal Fermi gas as compared to those for an ideal classical gas. These 

coefficients have alternating signs and with increasing the order n they rapidly 

decrease. The contribution of higher order 𝑏𝑛  coefficients in the equation of state 

decreases as temperature increases and can be ignored as will be seen later in this 



11 
 

 
 

chapter. Especially at T ≥ 4MeV, the contribution is negligible for densities up to 0.1 

nucleon/fm3. 

Table 2.1: Numerical values of the b coefficients evaluated for the ideal Fermi gas. 

 𝑏𝑛 

𝑛 = 1 0.3535533905933 

𝑛 = 2 − 0.0049500897299 

𝑛 = 3 1.483857713 ×  10−4 

𝑛 = 4 −4.4256301 ×  10−6 

𝑛 = 5 1.006362 ×  10−7 

𝑛 = 6 −4.272 × 10−10 

 

In our work, we deal with an infinite ideal Fermi gas of non-interacting fermions. The 

single particle energies in Eq. 2.1 are given in this case by  

𝜀𝑘 =  
ћ2𝑘2

2 𝑚
 

where 𝑘 = 2𝜋 𝜆⁄  is fermion wave number, and m is the fermion mass. 

To investigate the convergence of Eqs. 2.2 and 2.3, the pressure of an infinite system 

of ideal nucleons is evaluated at different temperatures and up to different orders of n. 
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Fig. 2.1: The pressure of an ideal nucleons gas at different temperatures showing the 

effect of including terms up to order n. 
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It is clear from Fig. 2.1 that the convergence of the series depends on the temperature. 

At T = 2 MeV the pressure series converges at low densities up to about 0.06 

nucleon/fm3. The n = 6 term modifies the pressure summation at 0.1 nucleon/fm3 by 

only about 12%.  However, at the higher temperatures the pressure series still 

converge up to 0.1 nucleon/fm3 which means that the contribution of higher orders of 

n is negligible for T ≥ 4 MeV. For example at T = 4 MeV the n = 6 term modifies the 

pressure at the density of 0.1 nucleon/fm3 by only 0.06%. Hence in our work we will 

be satisfied with the first six terms in Eqs. 2.2 and 2.3 because we will not deal with 

system densities that exceed 0.1 nucleon/fm3. 

2.2 IDEAL BOSE GAS EQUATION OF STATE 

The ideal Bose gas is a physical system consisting of a large number of non-

interacting identical bosons, it is also the quantum mechanical version of an ideal gas. 

Bosons are particles whose spin quantum number is an integer, and they follow Bose-

Einstein statistics. 

At low temperatures close to absolute zero, all ideal gas bosons accommodate in the 

ground state at the same time, this phenomenon is called Bose-Einstein 

Condensation. However, that is not allowed for an ideal Fermi gas as mentioned 

before because of the Pauli Exclusion Principle. 
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The Bose-Einstein distribution function 
1

𝑒𝛽(𝜀𝑖− 𝜇)−1
 for a system consisting of N 

bosons with the single Bose particle energies  𝜀𝑖 satisfies the relation [23]: 

                                           
𝑁

𝑔
=  ∑ 𝑛𝑖 =  ∑

1

𝑒𝛽(𝜀𝑖− 𝜇) − 1
𝑖𝑖

                                            (2.4) 

Where 𝑛𝑖 is the probability that the ith energy level is occupied by a single boson at 

temperature T, and 𝜇 is the bosonic chemical potential. 

The Ideal Bose gas chemical potential and pressure can be formulated as [18]: 

                                    𝜇(𝑇, 𝜌 ) = 𝑇 [ln (
𝜆𝑇

3  𝜌

𝑔
) +  ∑ 𝑑𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]                            (2.5) 

                                   𝑃(𝑇, 𝜌 ) = 𝑇 𝜌 [1 +  ∑
𝑛

𝑛 + 1
 𝑑𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]                             (2.6) 

Where 𝑑𝑛 =  (−1)𝑛𝑏𝑛   are the Bose gas coefficients and the 𝑏𝑛  coefficients are given 

by table 2.1.  

To investigate the convergence of Eqs. 2.5 and 2.6, the pressure of an ideal bosonic 

infinite system is plotted at different temperatures and orders of n as shown in Fig. 

2.2. I choose a gas of non-interacting alpha particles which is classified as bosonic 

ideal gas since the alpha particle has spin zero. The alpha particle spin is zero, so the 

spin degeneracy factor for non-interacting alpha particles gas is equal to 1. 
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Fig. 2.2: The pressure of ideal alpha particles gas at different temperatures including 

terms up to order n. 
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The negative pressure at low temperatures reflects the Bose-Einstein Condensation 

phenomenon. By making comparison between Fig. 2.1 and Fig. 2.2, it is obvious that 

the pressure series for an ideal bosonic gas converges up to higher densities than the 

ideal fermionic gas. That is due to the higher mass of alpha particles compared with 

nucleons mass which affects the thermal wavelength and makes it smaller. For this 

bosonic ideal gas, the pressure series converges at low densities up to about          

0.05 nucleon/fm3 at T = 1 MeV as illustrated in the upper part of Fig. 2.2. However, 

the n = 6 term modifies the pressure summation at T = 1 MeV by 9% at 0.1 

nucleon/fm3 but at T = 2 MeV its effect does not exceed 0.3%. So the summation to 

the first six terms will be satisfactory since the convergence of the pressure series of 

bosonic ideal gas is assured at higher temperatures for densities up to 0.1 

nucleon/fm3. 
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CHAPTER 3 

SKYRME EFFECTIVE INTERACTION AND NUCLEAR MATTER 

EQUATION OF STATE  

Nucleons in nuclear matter interact with each other via the nuclear force. We will use 

a simple parameterization of the nuclear force called the Skyrme interaction [26].  

3.1 SKYRME EFFECTIVE INTERACTION MODEL 

The Skyrme interaction was proposed by Skyrme in 1962, and then used by 

Vautherin and Brink [27] to obtain the properties of finite nuclei as well as infinite 

nuclear matter. In this work we will use a zero-range Skyrme force in addition to 

switching off the Coulomb force between the protons, 

                         𝑣12 =  − 𝑡0𝛿(𝑟1 −  𝑟1) +  
𝑡3

6
𝜌𝜎 [

𝑟1 +  𝑟2

2
]  𝛿(𝑟1 − 𝑟2)                        (3.1) 

where 𝑣12 is the two-body Skyrme interaction between two nucleons, 𝑟1 and 𝑟2 are 

the position vectors of the two nucleons relative to a reference point, 𝜌 is the nuclear 

matter density and 𝜎 is a parameter that controls nuclear matter incompressibility 

without changing its binding energy [25]. The incompressibility is a measure of the 

relative volume change of a fluid or solid as a response to a pressure change and is 

given by   

𝐾 =  − 
1

𝑉

𝜕𝑃

𝜕𝑉
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where V and P are the nuclear matter volume and pressure respectively. The minus 

sign ensures that the incompressibility quantity is always positive. 

The Skyrme interaction as illustrated in Eq. 3.1 has a density-dependent component, 

which implies that the interaction between two specified nucleons is affected by the 

existence of other nucleons in the nuclear matter (three-body forces). 

The Skyrme interaction parameters 𝑡0 and 𝑡3 are related to the parameters 𝑎0 and 𝑎3  

of the equation of state of interacting nuclear matter [see Eqs. 3.13 and 3.14 below] 

by the following relations [3]: 

                                                                    𝑎0 =  
3

8
𝑡0                                                                             (3.2) 

                                                                    𝑎3 =  
1

16
𝑡3                                                         (3.3) 

These parameters together with 𝜎 can be determined phenomenologically by fitting 

the ground state properties of nuclear matter [3]: 

                                                         𝜎 =  
(𝐾 − 9 𝐸𝐵 −  𝐸𝐾)

(9 𝐸𝐵 + 3 𝐸𝐾)
                                              (3.4) 

                                          𝑎0𝜌0 =  
[(1 +  𝜎) 𝐸𝐵 + (𝜎 +  

1

3
) 𝐸𝐾]

𝜎
                                   (3.5) 

                                                      𝑎0𝜌0
1+ 𝜎 =  

(  𝐸𝐵 +
𝐸𝐾

3
)

𝜎
                                                 (3.6) 
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where  𝐸𝐵 is the nuclear matter binding energy per particle, whereas 𝐸𝐾 is the nuclear 

matter kinetic energy per particle. 𝜌0 is called the saturation density which is defined 

as the uniformly-distributed density inside a large-radius heavy nucleus [3, 14]: 

𝜌0 =  0.17 nucleon/fm3 

This value is not the same value of finite-nuclei average density which is defined as 

𝜌 =  
𝐴

4

3
 𝜋 𝑅3

 for mean nuclear radius 𝑅 =  𝑟0𝐴1 3⁄ , where 𝑟0 = 1.2 fm. As a result, the 

average density is found to be constant for any nucleus regardless of its mass number 

and can be approximated to 0.14 nucleon/fm3. The difference between these two 

values is attributed to the absence of the surface region in infinite nuclear matter [24]. 

Infinite nuclear matter binding energy per particle can be determined from the 

Weizsaecker (semi-empirical) mass formula for the binding energy B(Z,N) of a 

nucleus consists of Z protons and N = A – Z neutrons [24], 

                 𝐵(Z, N) =  𝛼1 𝐴 −  𝛼2 𝐴
2 3⁄ −  𝛼3 

Z (Z−1)

𝐴1 3⁄  −  𝛼4 
(N−Z)2

𝐴
+ ∆                     (3.7) 

𝛼1, 𝛼2 , 𝛼3 , 𝛼4 and ∆ are determined by fitting experimental binding energy data for 

some nuclei, this is why it is called semi-empirical formula. The common values are 

[24]: 

𝛼1 =  16 MeV is called the volume energy parameter. 

𝛼2 =  17 MeV is called the surface energy parameter. 
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𝛼3 =  0.6 MeV is called the coulomb energy parameter. 

𝛼4 =  25 MeV is called the symmetry energy parameter. 

∆ is the pairing energy parameter and it is given by: 

∆ =  {
𝛿   𝑒𝑣𝑒𝑛 − 𝑒𝑣𝑒𝑛 𝑛𝑢𝑐𝑙𝑒𝑖
0  𝑜𝑑𝑑 − 𝑒𝑣𝑒𝑛 𝑛𝑢𝑐𝑙𝑒𝑖

− 𝛿 𝑜𝑑𝑑 − 𝑜𝑑𝑑 𝑛𝑢𝑐𝑙𝑒𝑖
}  where  𝛿 =  

25

𝐴
 MeV 

In many cases it is better to use the binding energy per nucleon: 

            
𝐵(Z, N)

𝐴
=  𝛼1 − 

𝛼2 

𝐴1 3⁄
−  𝛼3 

Z (Z − 1)

𝐴4 3⁄
 −  𝛼4 

(N − Z)2

𝐴2
+ 

∆

𝐴
                     (3.8) 

For finite nuclei, the binding energy per nucleon is around 8 MeV for most heavy 

nuclei with mass number larger than twenty  (𝐴 > 20) as illustrated in Fig. 3.1. 

 

Fig. 3.1: The binding energy per nucleon for finite nuclei [24]. 
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For infinite nuclear matter; which is described as an idealized system of an infinite 

number of nucleons interacting via the nuclear strong force with the Coulomb force 

switched off, the surface energy term vanishes since it is proportional to 𝐴−1 3⁄ . The 

Coulomb term is also equal to zero due to switching off the Coulomb repulsion 

between protons. Moreover, we shall assume that the proton number is equal to the 

neutron number (Z = N). Such a system is called symmetric nuclear matter which 

leads to symmetry energy term cancellation. At last, we are dealing with an infinite 

number of nucleons so the pairing term goes to zero. Now the binding energy per 

nucleon for infinite nuclear matter is given by the following relation: 

                                                                 
𝐵(Z, N)

𝐴
=  𝛼1                                                       (3.9) 

Hence, infinite symmetric nuclear matter binding energy per nucleon (𝐸𝐵) is 16 

MeV.  

Infinite nuclear matter kinetic energy per particle can be determined by using Fermi 

gas model. Whereas the kinetic energy depends on Fermi momentum 𝑘𝑓 and given by 

[23]: 

                                                    𝐸𝐾  =  
3

5

(ħ𝑘𝑓)
2

2 𝑚𝑛𝑢𝑐𝑙𝑒𝑜𝑛
=  

3

5
𝜀𝑓                                            (3.10) 

                                                             𝑘𝑓 =  (
3 𝜋2

2
𝜌0)

1 3⁄

                                              (3.11) 
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By substituting 𝜌0 = 0.17 MeV in Eq. 3.11, the Fermi momentum is  𝑘𝑓 = 1.36 fm-1. 

Hence infinite nuclear matter kinetic energy per particle (𝐸𝐾) is 24 MeV. However, 

the kinetic energy per particle for finite nuclei is 20 MeV by using the average 

density for finite nuclei 𝜌 = 0.14 nucleon/fm3 instead of the saturation density in Eq. 

3.11 and the Fermi momentum is  𝑘𝑓 = 1.27 fm-1 for finite nuclei. 

The Skyrme interaction parameters are listed in table 3.1, these parameters will be 

used later in this chapter. 

Table 3.1: Skyrme interaction parameters [3, 14]. 

 𝑎0𝜌0(𝑀𝑒𝑉) 𝑎3𝜌0
1+ 𝜎(𝑀𝑒𝑉) K (𝑀𝑒𝑉) 

𝜎 =  1 64 24 384 

𝜎 =  0.25 136 96 222 
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3.2 SYMMETRIC NUCLEAR MATTER EQUATION OF STATE 

INCLUDING SKYRME INTERACTION 

The ideal Fermi gas equation of state was discussed in chapter 2 where the nucleon-

nucleon interaction was ignored. If the nucleons interact via the Skyrme force only, 

we can extend the results of chapter 2 by including Skyrme force effects. The main 

effect will be on the single particle energies of the nucleons in symmetric nuclear 

matter with switching off the Coulomb force, 

                                                                𝜀𝑘 =  
ħ2𝑘2

2 𝑚
 + 𝜀0                                                      (3.12) 

where  𝜀0 =  − 
3

4
𝑡0 𝜌 + 

3

24
𝑡3 [1 +

𝜎

2
] 𝜌1+𝜎  is the Skyrme single-particle energy term 

[27].  

The pressure and chemical potential of symmetric nuclear matter with Skyrme 

interaction equations of state respectively as derived by Jaqaman [3, 15], 

𝜇(𝑇, 𝜌 ) = −2 𝑎0 𝜌 + 𝑎3(2 + 𝜎)𝜌(1+𝜎)  + 𝑇 [ln (
𝜆𝑇

3  𝜌

𝑔
) +  ∑ 𝑏𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]   (3.13) 

�̃�(𝑇, 𝜌 ) = − 𝑎0𝜌2 +  𝑎3(1 + 𝜎)𝜌(2+𝜎) + 𝑇 𝜌 [1 +  ∑
𝑛

𝑛 + 1
 𝑏𝑛 (

𝜆𝑇
3  𝜌

𝑔
)

𝑛∞

𝑛=1

]    (3.14) 

where 𝑔 = 4  is the nucleon spin-isospin degeneracy factor. 
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Fig. 3.2: The pressure and chemical potential isotherms for symmetric nuclear matter 

including Skyrme interaction at different temperatures with  𝛔 = 𝟎. 𝟐𝟓. 

 

The Pressure and Chemical potential isotherms for symmetric nuclear matter with the 

Skyrme interaction are shown in Fig. 3.2. Both sets of isotherms increase with density 

until they reach to a maximum value before dropping to a minimum and rising again. 

Their behaviour is the same as that of the Van der Waals equation of state. Each 

isotherm consists of three regions; the first one is the low-density vapour region 

where the pressure increases with density. The second is the intermediate-density 

region where the isotherm has a negative slope and is thus mechanically unstable. 

The third is the high-density liquid region. As the temperature increases the maxima 

and minima become less prominent until they disappear as can be seen for the T = 20 

MeV isotherms.  
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At a certain temperature which is called the critical temperature, the pressure or 

chemical potential isotherm has one inflection point; the maximum and minimum 

will merge. This inflection point is called the critical point and defined as [28] 

                                        
𝜕𝑃

𝜕𝜌
=  

𝜕2𝑃

𝜕2𝜌
= 0 [𝑜𝑟 

𝜕𝜇

𝜕𝜌
=  

𝜕2𝜇

𝜕2𝜌
= 0 ]                                   (3.15) 

Hence, above the critical temperature the pressure and chemical potential isotherms 

monotonically increase as density increases and only one fluid phase exists. So         

T = 20 MeV is located above the critical temperature due to isotherms continuously 

increasing with density. In particular the critical temperature must be located between 

15 and 20 MeV.  

 

Fig. 3.3: Pressure isotherms for a nucleonic gas with the Skyrme interaction (𝛔 =

𝟎. 𝟐𝟓) at the critical temperature 17.32 MeV and at two nearby temperatures. 
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In order to determine the critical temperature, we plot several isotherms at different 

temperatures differing by 1 MeV. We can conclude that the critical temperature for a 

nucleonic gas with Skyrme interactions (𝜎 = 0.25) is 17.32 MeV as illustrated in 

Fig. 3.3. Hence the critical point for an infinite symmetric nuclear matter consists of 

nucleons interacting via Skyrme interaction is defined in table 3.2.   

Table 3.2: The critical point for symmetric nuclear matter with including Skyrme 

interaction at different temperatures with  𝝈 = 𝟎. 𝟐𝟓. 

  𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝜌𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

 ( MeV ) (nucleon/fm3) ( MeV.fm-3 ) 

In this work 17.32 0.058 0.2759 

H. R. Jaqaman [3] 17.34 - - 

S. Levit, and P. Bonche [14] 17.22 0.057 0.27 

S. Talahmeh, and H. R. Jaqaman 

[18] 

 

17.3 

 

- 

 

- 

 

The small difference between our result and other ones may be attributed to the 

different number of terms (n) included in the pressure isotherm series as defined in 

Eq. 3.14. In [3] the series summation of pressure was carried up to n = 5 whereas in 

[14] the summation involved the terms n = 1 only. On the other hand, in [18] and our 

work the pressure series was summed up to n = 6.  
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CHAPTER 4 

NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE) 

The nuclear matter vapour phase becomes inhomogeneous due to the existence of 

light clusters at moderate temperatures and densities much less than the saturation 

density. These clusters which are classified as bound nuclear states can minimize 

nuclear matter energy. Moreover, these two-, three-, and many-body correlations will 

change nuclear matter composition and modify its thermo-dynamical behaviour. At          

𝜌 ≪ 0.17 nucleon/fm3 with moderate temperatures T ≤ 20 MeV, an effective 

interaction potential expresses the nucleon-nucleon interaction and the quark 

substructure and excitations of internal degrees of freedom of nucleons are neglected 

[7]. 

Nuclear matter with clusters is widely discussed in many studies which depend on 

several theoretical investigations, they showed that clusters are dominant at very low 

densities and must be included in the nuclear matter equation of state. 

4.1 CLUSTERED NUCLEAR MATTER THEORETICAL INVESTIGATIONS 

Including clusters in the nuclear matter equation of state has been studied by using 

various models; each one treats nuclear matter with a different technique than the 

others.  
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4.1.1 THE VIRIAL EXPANSION 

This model is one of the oldest and general methods in constructing the equation of 

state of a dilute gas. Bound and scattering states are included here, but the medium 

effects on the cluster formation and dissolution are neglected.  

It has two major assumptions. First, a gas phase system with decreasing temperature 

or increasing density does not undergo a phase transition. Second, fugacity                 

(𝑧 =  𝑒𝜇 𝑇⁄ ) is small, so the partition function can be expressed in powers of 𝑧. Here 

𝜇 is the chemical potential and T is the temperature [6, 29]. 

4.1.2 THE MICROSCOPIC QUANTUM STATISTICAL APPROACH 

The microscopic quantum statistical approach is a non-relativistic approach based on 

the many body theory. It uses effective nucleon-nucleon interactions explicitly and 

includes the medium effects on the cluster formation and dissolution. It treats the 

nucleons and clusters as quasi-particles. The quasi-particle energy of a cluster 

consisting of A-nucleons (Z protons and N neutrons) in the ground state is given by 

[7, 13, 30]: 

 𝐸𝐴,𝑍
𝑞𝑢𝑎𝑠𝑖(𝑘) =  𝐸𝐴,𝑍

0 +  
𝑘2

2 𝐴 𝑚
+  ∆𝐸𝐴,𝑍

𝑆𝐸 (𝑘) + 𝐸𝐴,𝑍
𝑃𝑎𝑢𝑙𝑖(𝑘) +  ∆𝐸𝐴,𝑍

𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝑘) + ⋯    (4.1) 

where m is the nucleon mass, and k is the cluster’s momentum. The first term in Eq. 

4.1 expresses the cluster binding energy in vacuum, while the second one is the 

cluster’s kinetic energy. ∆𝐸𝐴,𝑍
𝑆𝐸 (𝑃) is the shift that occurs in the self-energy due to the 
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medium effects, where the self-energy is the potential felt by the cluster including all 

interactions between the cluster and all other clusters and free nucleons. 𝐸𝐴,𝑍
𝑃𝑎𝑢𝑙𝑖(𝑃) is 

the Pauli blocking term which will be discussed later in this chapter. Finally, 

∆𝐸𝐴,𝑍
𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝑃) is the Coulomb term, it expresses the cluster energy change due to the 

electric repulsion between the cluster’s protons. However, it is small and vanishes as 

we switch off the Coulomb force in symmetric nuclear matter. 

4.1.3 RELATIVISTIC MEAN FIELD MODEL (RMF) 

The clusters are treated as point-like particles and their internal structure is neglected. 

Nucleons interact by mesons exchange between them [7, 31]. 

The medium-modified clusters are inserted as explicit degrees of freedom and treated 

as quasi-particles. The medium effects are included by using density and temperature-

dependent shifts of cluster binding energy. 

4.1.4 NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE) 

The Nuclear Statistical Equilibrium is the simplest model that treats nuclear matter 

from a statistical point of view [4, 32]. My work is built on it with some 

modifications. 
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4.2 NUCLEAR STATISTICAL EQUILIBRIUM MODEL (NSE) IN ORIGINAL 

FORM 

The Nuclear Statistical Equilibrium model treats the nuclear matter at low densities 

from a statistical point of view as non-interacting or minimally interacting particles at 

statistical equilibrium. Bound states are just included here while the excited and 

scattering states are ignored as are the medium modifications [7]. All models should 

reproduce the limiting cases of the NSE model at very low densities. 

In this work we will deal with Low Density Clustered Symmetric Nuclear Matter that 

consists of fermions (free nucleons and fermionic clusters – odd mass number) and 

bosons (bosonic clusters – even mass number). The effective nucleon-nucleon 

interaction is ignored here since we don’t want to double-count the effect of the 

interaction; the clusters are formed as a result of the interaction between nucleons. 

Each cluster type has its own mass number (A = N + Z) in clustered symmetric 

nuclear matter, these clusters are in chemical equilibrium with the surrounding 

nucleons in the vapour as NSE model assumes. 

                                                 𝜇𝑐𝑙𝑢𝑠𝑡𝑒𝑟  =  𝑍 𝜇𝑝 + 𝑁 𝜇𝑛 = 𝐴 𝜇                                        (4.2) 

where 𝜇𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑎𝑛𝑑  𝜇 are the chemical potential for the cluster and the surrounding 

vapour of nucleons respectively. Here the proton and neutron chemical potentials are 

equal ( 𝜇𝑝 =  𝜇𝑛) due to the properties of symmetric nuclear matter. The nucleon’s 

chemical potential is given by Eq. 2.2. The total density of clustered symmetric 
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nuclear matter consists of all contributions from free nucleons and clusters, which is 

given by  

                                𝜌𝑡𝑜𝑡𝑎𝑙 =  𝜌𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠 + ∑ 𝐴𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝜌𝑐𝑙𝑢𝑠𝑡𝑒𝑟                               (4.3) 

The contribution of each type of cluster to the total density depends on the probability 

(𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟) of finding the cluster in its ground state with kinetic energy 𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0 =

ħ2𝑘2

2 𝑚𝑐𝑙𝑢𝑠𝑡𝑒𝑟
 and its spin degeneracy factor ( 𝑔 = 2𝑠 + 1 where 𝑠 is the cluster’s spin) 

[18, 33]. 

                                                 𝜌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
𝑔

(2𝜋)3
∫ 𝑑3𝑘 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟                                      (4.4) 

                   𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =  {𝑒𝑥𝑝[𝛽(𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0 −  𝜇𝑐𝑙𝑢𝑠𝑡𝑒𝑟 −  𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟

0 ) ± 1]}−1                  (4.5) 

where the (+) sign is used for fermionic clusters while the (−) sign is used for 

bosonic clusters. 𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0  is the cluster’s binding energy at zero density, that is in 

vacuum.  

The original NSE model predicts that at high density most nucleons in symmetric 

nuclear matter would be bound and form different clusters. However, this is 

unphysical and can be corrected by including the medium effects on cluster formation 

and dissolution.  
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In this work, we will modify the NSE and take into account the medium effects to 

remedy its deficiency by considering the reduction in the binding energy of the 

clusters as the density of the surrounding vapour increases. 

 

4.3 THE MODIFIED NUCLEAR STATISTICAL EQUILIBRIUM MODEL  

Clusters dissolve as clustered symmetric nuclear matter density increases. The main 

medium effect is called the Pauli blocking which is caused by the fermionic nature of 

nucleons (protons and neutrons) where the quantum mechanics treat them as 

indistinguishable particles and requires the total wavefunction to be anti-symmetric 

under the exchange of any two identical fermions. This leads to the Pauli Exclusion 

Principle which prevents identical particles from occupying the same point in the 

position and momentum phase-space simultaneously. This applies not only to the 

exchange of nucleons inside a cluster but also to the exchange of any of these 

nucleons with the free nucleons in the outside vapour. 

Pauli blocking acts on the bound states (clusters) by decreasing their binding energy 

as the density of symmetric nuclear matter increases [7, 30, 34]. At a certain point in 

medium density, the binding energy of the cluster vanishes and the cluster dissolves 

to its constituents. This point is known as the Mott density 𝜌𝑀𝑜𝑡𝑡 [13]. Each cluster 

has its characteristic Mott density which depends on its temperature and its centre of 

mass momentum. The cluster can survive to higher densities as temperature increases 

or if it has non-zero CM momentum (that is the Mott density increases with 
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temperature) [35]. In this work, we will use Mott densities calculated at zero CM 

momentum clusters [7]. 

4.3.1 DENSITY-DEPENDENT BINDING ENERGY 

The modification that we entered to NSE model to remedy its insufficiency is to use a 

density-dependent binding energy for the cluster which we must include in Eq.4.5 

instead of the binding energy at zero-density, that is the binding energy of the 

corresponding nucleus with the same A and Z. The binding energies of light clusters 

we use were calculated in [7]. They decrease almost linearly with density and to 

simulate these effects we have used the following form: 

                                      𝐵𝐶𝑙𝑢𝑠𝑡𝑒𝑟 =  𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0 (1 −  

𝜌𝑡𝑜𝑡𝑎𝑙

𝜌𝑀𝑜𝑡𝑡
)                               (4.6) 

4.3.2 MOTT DENSITY OF CLUSTERS  

The medium effects on the cluster’s binding energy were studied by using different 

models [30, 36]. To get zero CM momentum Mott densities for our clusters we used 

the results of Typel et al [7] which were based on the relativistic mean field model     

(RMF) which are shown in Fig. 4.1. The values of the Mott densities up to A = 4 

obtained from these results are listed in table 4.1. 
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Fig. 4.1: The binding energy as a function of medium density for deuteron, triton, 

helion and alpha clusters at different temperatures [7]. 

 

Table 4.1: Zero-CM momentum Mott density values for deuteron, triton, helion and 

alpha clusters at different temperatures. 

 T = 5 MeV T = 10 MeV T = 15 MeV T = 20 MeV 

Deuteron [ nucleon/fm3 ] 0.0025 0.0047 0.0071 0.0095 

Triton [ nucleon/fm3 ] 0.0040 0.0065 0.0096 0.0129 

Helion [ nucleon/fm3 ] 0.0035 0.0063 0.0094 0.0128 

Alpha [ nucleon/fm3 ] 0.0080 0.0120 0.0165 0.0215 
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The Mott densities for heavier clusters (A > 4) can be extrapolated from the Mott 

densities for the deuteron, triton, helion and alpha clusters (𝑑, 𝑡, ℎ 𝑎𝑛𝑑 𝛼) at different 

temperatures. First we use a quadratic polynomial fit method to parameterize the 

Mott densities for each cluster (𝑑, 𝑡, ℎ 𝑎𝑛𝑑 𝛼) as a function of temperature T. 

                                         𝑀𝑜𝑡𝑡 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖(𝑇) = 𝑎 𝑇2 + 𝑏 𝑇 + 𝑐                                 (4.7) 

Where 𝑖 is cluster indicator and (a, b and c) are the coefficients of the quadratic 

polynomial which are listed in table 4.2. 

Table 4.2: Temperature-dependant Mott densities Quadratic polynomial     

coefficients for  (𝒅, 𝒕, 𝒉 𝒂𝒏𝒅 𝜶). 

 

Cluster 

a 

 [
nucleon

 fm3 MeV2] 

 

b 

 [
nucleon

 fm3 MeV
] 

c 

 [
nucleon

 fm3 ] 

Deuteron 0.004958 0.000418 0.00035 

Triton 0.01983 0.000396 0.0018 

Helion 0.0148725 0.00047 0.001 

Alpha 0.0067379 0.00065 0.0045 

 

So at any temperature, we can know the extrapolated Mott densities for 

(𝑑, 𝑡, ℎ 𝑎𝑛𝑑 𝛼) clusters.  
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Secondly, for each temperature, Mott densities for heavier clusters can be estimated 

by extrapolating the Mott densities of these four light clusters using a quadratic fit 

polynomial method  

                                     𝑀𝑜𝑡𝑡 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐴) = 𝑝 𝐴2 + 𝑞 𝐴 + 𝑟                                     (4.8) 

The coefficients (𝑝, 𝑞 𝑎𝑛𝑑 𝑟) are listed in table 4.3 for different temperatures. These 

coefficients are obtained by fitting the Mott densities of the four light clusters with 

(A < 5). An example of this extrapolation procedure at T = 6 MeV is shown in Fig. 4.2. 

Table 4.3: Quadratic polynomial coefficients for mass number-dependant Mott 

densities at different temperatures. 

 𝑝 [nucleon−1 fm−3] 𝑞 [fm−3] 𝑟 [nucleon fm−3] 

T = 2 MeV 0.0012  −0.0049 0.0062 

T = 4 MeV 0.00145 − 0.0061 0.0085 

T = 6 MeV 0.0016 −0.00665 0.0098 

T = 8 MeV 0.00175 −0.00725 0.0113 

T = 10 MeV 0.0019 −0.00775 0.0126 

T = 12 MeV 0.0021 −0.0086 0.0145 

 



37 
 

 
 

 

Fig. 4.2: Mott density as a function of mass number at T = 6 MeV. 
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CHAPTER 5 

CLUSTERED SYMMETRIC NUCLEAR MATTER 

The composition of clustered symmetric nuclear matter can be determined by 

evaluating the fraction 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 of nucleons that are consumed in building each type 

of clusters: 

                                               𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐴𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝜌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝜌𝑡𝑜𝑡𝑎𝑙
                                                (5.1) 

where 𝜌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 and 𝜌𝑡𝑜𝑡𝑎𝑙 are given by Eq. 4.4 and Eq. 4.3 respectively. 

Now, we are ready to study the abundance of clusters at different temperatures. But 

there is still one problem related to the strength of the two body correlations which is 

called the Deuteron abundance overestimation. This problem had been studied in    

[7, 36]. They found that deuterons can be formed only for CM momenta larger than 

the deuteron Mott momentum ħ𝑘𝑑
𝑀𝑜𝑡𝑡 if symmetric nuclear matter densities are higher 

than the Deuteron Mott density. However, this has a strong effect on the fractions of 

other clusters. So to avoid this problem, they suggested that we must limit our 

momenta only over the region k  >  𝑘𝑑
𝑀𝑜𝑡𝑡 where the bound state energy is lower than 

the continuum of scattering states. These corrections become important with 

increasing temperatures. 

The value of  𝑘𝑑
𝑀𝑜𝑡𝑡 as calculated in [29] is given by: 
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[ 𝑘𝑑
𝑀𝑜𝑡𝑡( 𝑇 , 𝜌𝑡𝑜𝑡𝑎𝑙  , 𝜌𝑀𝑜𝑡𝑡,𝑑 )]

2
  

           ≈  {

−(4.5185−0.16164 𝑇+0.0056582 𝑇2)

2 ( 1.32−0.02782 𝑇)

+ [
(4.5185−0.16164 𝑇+0.0056582 𝑇2)

2

4(1.32−0.02782 𝑇)2 
+  

1000 ( 𝜌𝑡𝑜𝑡𝑎𝑙−  𝜌𝑀𝑜𝑡𝑡,𝑑 

( 1.32−0.02782 𝑇)
]

1 2⁄ }             (5.2) 

The effect of limiting the deuteron momenta integration to the region k > 𝑘𝑑
𝑀𝑜𝑡𝑡 is 

shown in Fig. 5.1 below. This overestimation appears only in the case of the deuteron 

because of its extremely low binding energy. 

 

Fig. 5.1: Fraction of nucleons in Deuteron clusters with including all momentum 

space and with case of avoiding Deuteron overestimation at T = 12 MeV. 
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5.1 CLUSTERS INCLUDED IN THIS WORK  

Most previous studies [7, 16, 37] examined clusterization in nuclear matter by 

including deuteron, triton, helion and alpha clusters and established its equation of 

state by using different approaches. Moreover, there are few studies which included 

more clusters like [17] which included clusters with mass number up to A = 13 and 

[19] which included clusters with mass number up to A = 25. In this work, we 

included light and medium nuclei with mass number up to A = 50. For each A the 

nucleus which has the largest binding energy per nucleon is selected. In addition, for 

each collection of isobars we also selected and included in the calculation any other 

isobar whose binding energy per nucleon differs by no more than 0.1 MeV from the 

nucleus with the highest B/A. In total 89 clusters were thus selected and included in 

our equation of state. They are listed in table 5.1. 

Table 5.1: The binding energies, spin, spin-degeneracy factor and mass of the nuclei 

used in the present calculation [38]. 

Cluster A 𝐵 𝐴⁄ (𝑀𝑒𝑉 ) 𝐵𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0  (𝑀𝑒𝑉 ) Spin 𝑔 Mass ( 𝑀𝑒𝑉 𝑐2⁄ ) 

H 2 1.112283 2.224566 1 3 1875.612929 

H 3 2.827266 8.481798 0.5 2 2808.921109 

He 3 2.572681 7.718043 0.5 2 2808.39158 

He 4 7.073915 28.29566 0 1 3727.379375 
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He 5 5.481 27.405 1.5 4 4667.831413 

Li 6 5.332345 31.99407 1 3 5601.518569 

Li 7 5.606291 39.244037 1.5 4 6533.834014 

Be 8 7.062435 56.49948 0 1 7454.850833 

Be 9 6.46276 58.16484 1.5 4 8392.750907 

Be 10 6.49771 64.9771 0 1 9325.50401 

B 10 6.47507 64.7507 3 7 9324.437375 

B 11 6.92771 76.20481 1.5 4 10252.54866 

C 12 7.680144 92.161728 0 1 11174.8642 

C 13 7.469849 97.108037 0.5 2 12109.4833 

C 14 7.520319 105.284466 0 1 13040.87228 

N 14 7.475614 104.658596 1 3 13040.20527 

N 15 7.699459 115.491885 0.5 2 13968.93739 

O 16 7.976206 127.619296 0 1 14895.08261 

O 17 7.750731 131.762427 2.5 6 15830.50489 

O 18 7.76703 139.80654 0 1 16762.02628 

F 19 7.779015 147.801285 0.5 2 17692.30419 
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Ne 20 8.03224 160.6448 0 1 18617.73353 

Ne 21 7.971713 167.405973 1.5 4 19550.53778 

Ne 22 8.080465 177.77023 0 1 20479.73894 

Na 23 8.111493 186.564339 1.5 4 21409.2178 

Mg 24 8.260709 198.257016 0 1 22335.79821 

Mg 25 8.223504 205.5876 2.5 6 23268.03305 

Mg 26 8.333872 216.680672 0 1 24196.50539 

Mg 27 8.263854 223.124058 0.5 2 25129.62742 

Al 27 8.331545 224.951715 2.5 6 25126.50757 

Si 28 8.447744 236.536832 0 1 26053.19581 

Si 29 8.448634 245.010386 0.5 2 26984.28766 

Al 29 8.34872 242.11288 2.5 6 26988.47705 

Si 30 8.520653 255.61959 0 1 27913.24387 

P 31 8.481178 262.916518 0.5 2 28844.22043 

Si 31 8.45829 262.20699 1.5 4 28846.22189 

S 32 8.493134 271.780288 0 1 29773.63027 

Si 32 8.481569 271.410208 0 1 29776.58408 
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P 32 8.46413 270.85216 1 3 29775.85019 

S 33 8.497634 280.421922 1.5 4 30704.55407 

P 33 8.51381 280.95573 0.5 2 30705.31198 

S 34 8.583501 291.839034 0 1 31632.70237 

Cl 35 8.520278 298.20973 1.5 4 32564.60542 

P 35 8.44625 295.61875 0.5 2 32569.77994 

S 35 8.537854 298.82489 1.5 4 32565.2819 

Ar 36 8.519909 306.716724 0 1 33494.37236 

S 36 8.575387 308.713932 0 1 33494.95828 

Cl 36 8.521927 306.789372 2 5 33495.59119 

Cl 37 8.57028 317.10036 1.5 4 34424.84562 

Ar 37 8.527139 315.504143 1.5 4 34425.15034 

Ar 38 8.614273 327.342374 0 1 35352.87754 

K 39 8.55702 333.72378 1.5 4 36284.77017 

Cl 39 8.4944 331.2816 1.5 4 36289.79517 

Ar 39 8.56259 333.94101 3.5 8 36285.84396 

Ca 40 8.551301 342.05204 0 1 37214.71615 
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Ar 40 8.595259 343.81036 0 1 37215.54039 

K 40 8.538083 341.52332 4 9 37216.53608 

K 41 8.576061 351.618501 1.5 4 38146.0063 

Ar 41 8.534371 349.909211 3.5 8 38149.0069 

Ca 41 8.546703 350.414823 3.5 8 38145.91876 

Ca 42 8.616559 361.895478 0 1 39074.00354 

Ar 42 8.55561 359.33562 0 1 39079.14604 

K 42 8.551245 359.15229 2 5 39078.03791 

Ca 43 8.600659 369.828337 3.5 8 40005.63605 

K 43 8.57663 368.79509 1.5 4 40007.96075 

Sc 43 8.53082 366.82526 3.5 8 40007.34812 

Ca 44 8.65817 380.95948 0 1 40934.07037 

Sc 45 8.61884 387.8478 3.5 8 41865.4564 

K 45 8.55451 384.95295 1.5 4 41870.93311 

Ca 45 8.63054 388.3743 3.5 8 41866.22098 

Ti 45 8.555631 385.003395 3.5 8 41867.00991 

Ti 46 8.656356 398.192376 0 1 42793.38638 
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Ca 46 8.66889 398.76894 0 1 42795.39193 

Sc 46 8.621922 396.608412 4 9 42796.26119 

Ti 47 8.661121 407.072687 2.5 6 43724.07147 

Ca 47 8.63926 406.04522 3.5 8 43727.68096 

Sc 47 8.66499 407.25453 3.5 8 43725.18027 

V 47 8.582127 403.359969 1.5 4 43726.49339 

Ti 48 8.722903 418.699344 0 1 44652.01024 

Ca 48 8.66647 415.99056 0 1 44657.30089;8 

Sc 48 8.65604 415.48992 6 13 44656.50995 

V 48 8.62301 413.90448 4 9 44655.51418 

Ti 49 8.711055 426.841695 3.5 8 45583.43326 

Sc 49 8.68607 425.61743 3.5 8 45585.94824 

V 49 8.682806 425.457494 3.5 8 45583.52672 

Cr 49 8.61327 422.05023 2.5 6 45585.64495 

Cr 50 8.700981 435.04905 0 1 46512.21005 

Ti 50 8.755618 437.7809 0 1 46512.05947 

V 50 8.695869 434.79345 6 13 46513.75622 
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5.2 CLUSTERED SYMMETRIC NUCLEAR MATTER COMPOSITION AT 

DIFFERENT TEMPERATURES 

In this section, the composition of symmetric nuclear matter at each temperature was 

determined separately. First, 25 clusters were included just as in a previous study [19] 

to compare the results of the two studies and to notice the effect of including more 

clusters on the composition of symmetric nuclear matter. Second, clusters with mass 

number up to A= 50 were included and the fraction of nucleons in each type of 

cluster was estimated at different temperatures. At each Temperature the composition 

of clustered symmetric nuclear matter is determined as a function of total nuclear 

matter density up to 0.1 nucleon/fm3.  

5.2.1 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 2 MeV 

The composition of clustered symmetric nuclear matter at T = 2 MeV is shown in 

Fig. 5.2 and Fig. 5.3. At T = 2 MeV as special case, for each figure the density range 

was separated to get the obvious changes in the composition of clustered symmetric 

nuclear matter which occur in this case at extremely low densities as compared with 

our upper density limit of 0.1 nucleon/fm3. 

At densities less than 0.0016 nucleon/fm3 clusters with mass number up to A = 5 are 

dominant regardless of what heavier clusters are included in symmetric nuclear 

matter as illustrated in Fig. 5.2 and Fig. 5.3.a. These are mostly alpha particles as 
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shown later in the next subsection. However, as the densities increase the presence of 

heavier clusters becomes more important. 

  

Fig. 5.2: Clustered symmetric nuclear matter composition at T = 2 MeV when the 

calculation included clusters up to A = 25 only. 

 

In the first case as illustrated in Fig. 5.2 when only clusters up to A = 25 were 

included, the fraction of nucleons in clusters with mass number (6 ≤ 𝐴 ≤ 10) does 

not exceed 16% and has its largest fraction in the density range (0.001 – 0.003) 

nucleon/fm3. However, clusters with mass number (11 ≤ 𝐴 ≤ 15) are the dominant 

clusters in symmetric nuclear matter in the density range (0.0016 – 0.0027) 

nucleon/fm3. For the whole density range, the fraction of nucleons in clusters with 

mass number (16 ≤ 𝐴 ≤ 20) does not exceed 27%. At  𝜌 =  0.001 nucleon/fm3, 
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clusters with mass number (21 ≤ 𝐴 ≤ 25) start to form and become the dominant 

clusters at 𝜌 ≥  0.003 nucleon/fm3 and the lighter clusters almost disappear for 

densities higher than 𝜌 = 0.039 nucleon/fm3. The contribution of the heaviest 

fragments (21 ≤ 𝐴 ≤ 25) becomes almost 100% for 𝜌 >  0.004 nucleon/fm3. As 

seen in Fig. 5.3.b this unrealistic result changes when we include more clusters in the 

calculation. 

Now, by including the 89 clusters in symmetric nuclear matter the fraction of 

nucleons in clusters with mass number (𝐴 ≤ 25) at 𝜌 ≥ 0.002 nucleon/fm3 does not 

exceed 35% due to the formation of  other clusters with mass number (25 ≤ 𝐴 ≤

50). However, clusters with mass number (𝐴 ≥ 26) start to form at 𝜌 = 0.0012                       

nucleon/fm3. Clusters with mass number (31 ≤ 𝐴 ≤ 35) are dominant in the density 

range 0.0027 - 0.008 nucleon/fm3 although their fraction does not exceed 25%. After 

that, the dominant clusters are those with mass number (46 ≤ 𝐴 ≤ 50) up to 0.1 

nucleon/fm3 as shown in Fig. 5.3.b. In particular we note that the percentage of 

nucleons in one group of clusters never reaches 100% when we include the clusters 

(𝐴 > 25) in the calculation.  

In the present work we included several isobars for each A. For example the mass 

number range 46 – 50 has 18 different nuclides and the range 41 – 50 has 14 different 

nuclides. So when the fraction of heaviest clusters group (46 ≤ A ≤ 50) reaches 90% 

at 0.1 nucleon/fm3 which is about 5% per cluster type whereas The fraction of 

heaviest clusters group (21 ≤ A ≤ 25) reaches 100% when we included only clusters 
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up to A = 25 which has only five different nuclides that means each cluster type had 

an unrealistically large contribution of 20% per cluster. 

 

 

Fig. 5.3: Clustered symmetric nuclear matter composition at T = 2 MeV by including 

clusters with mass number up to A = 50 in the calculation. The upper part (a) 

represents the fraction of nucleons in clusters with mass number 2 ≤ 𝐴 ≤ 25, 

whereas the lower part (b) represents the fraction of nucleons in clusters with mass 

number 26 ≤ 𝐴 ≤ 50. 

a 

b 



50 
 

 
 

5.2.2 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 4 MeV 

The cluster fractions in symmetric nuclear matter at T = 4 MeV as a function of the 

total density are given in Fig. 5.4 when clusters up to A = 25 only were included in 

the clustered symmetric nuclear matter and in Fig. 5.5 when clusters up to A = 50 

were included. At densities less than 0.005 nucleon/fm3 clusters with mass number up 

to A = 5 are dominant irrespective of what clusters are included in symmetric nuclear 

matter. These light clusters up to A = 5 are mainly deuterons as shown in Fig. 5.6. In 

particular 61% of nucleons are bound in theses clusters at 0.005 nucleon/fm3 and the 

percentage is higher at lower densities reaching a maximum of about 91%. On the 

other hand, this fraction decreases with increasing density and they disappear 

completely at densities of about 0.014 nucleon/fm3 because of the dissolution of these 

clusters due to their low Mott densities and the formation of heavier clusters.  

 

Fig. 5.4: Clustered symmetric nuclear matter composition at T = 4 MeV when the 

calculation included clusters up to A = 25 only. 
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In both cases regardless of what heavier clusters are included in the calculations, as 

the fraction of the lightest clusters goes down, clusters with mass number (6 ≤ 𝐴 ≤

10) appear strongly with a fraction that reaches a maximum of 44% at a density 

around 0.008 nucleon/fm3. With almost the same maximum fraction but at 0.012 

nucleon/fm3, nucleons are bound in clusters with mass number (11 ≤ 𝐴 ≤ 15).  

However, the fraction of nucleons in clusters with mass number (16 ≤ 𝐴 ≤ 20) does 

not exceed 30% along the whole density range when clusters up to A = 25 only were 

included in the calculations and this fraction is reduced to 22% when the 89 clusters 

were included. 

  

Fig. 5.5: Clustered symmetric nuclear matter composition at T = 4 MeV. The left part 

(a) gives the fraction of nucleons in clusters up to A = 25 when the clusters up to A = 

50 were included in the calculations, whereas the right part (b) gives the fraction of 

nucleons in clusters with 26 < A < 50. 
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As shown in Fig. 5.4, clusters with mass number (21 ≤ 𝐴 ≤ 25) appear strongly at 

density 0.023 nucleon/fm3 and remain dominant up to 0.1 nucleon/fm3 where their 

contribution reaches almost 100% when only clusters up to A= 25 are included in the 

calculation. However, when clusters up to A = 50 are included the fraction of 

nucleons in these clusters reaches its maximum of 18% at 0.026 nucleon/fm3 before 

dying gradually due to the formation of clusters with mass number (A ≥ 25) which 

start to appear at 0.011 nucleon/fm3 as displayed in Fig. 5.5.a.  

At 0.062 nucleon/fm3, clusters with mass number (46 ≤ A ≤ 50) would have 

substantial contributions in symmetric nuclear matter and almost 40% of the system 

would consist of these clusters at 0.09 - 0.1 nucleon/fm3. In particular, we note that 

the percentage of nucleons in this group of the heaviest clusters is well below 100% 

when we included the clusters with (𝐴 > 25) in the calculation. The remaining 

bound nucleons are distributed among the different clusters in the range (26 ≤ A ≤

50). By including clusters up to A = 50 the heaviest clusters have a contribution of 

only 45% which is about 2.5% per cluster type .This behaviour is more realistic than 

what was obtained from the calculations with A up to 25 only, where the contribution 

of the heaviest clusters (21 ≤ 𝐴 ≤ 25) reaches almost 100% as can be seen from 

Fig 5.4 that means each cluster type had an unrealistically large contribution of 20%. 

Deuterons are the two body correlations, so they are easily formed. So they are the 

dominant clusters at very low density but not at very low temperatures. In symmetric 

nuclear matter in the very low density region a large portion of nucleons are bound in 
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alpha particles at T ≤ 2MeV as illustrated in Fig. 5.6. At higher temperatures (T ≥

 4MeV), the deuterons become dominant but at T = 3MeV alphas still have a 

significant contribution at low densities as compared with deuterons. In particular, at 

very low temperature and density the cluster fractions are simply determined by the 

binding energies and alphas have a high binding energy per nucleon compared with 

other light clusters [39]. 

   

Fig. 5.6: Deuteron and alphas fractions in symmetric nuclear matter at 

T = 2 MeV, 3 MeV and 4 MeV. 

 

 

5.2.3 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 6 MeV 

The composition of clustered symmetric nuclear matter at T = 6 MeV is shown in  

Fig. 5.7 and Fig. 5.8 which give the fraction of nucleons bound in each type of 

clusters as a function of  total density. For very low densities up to 0.02 nucleon/fm3 

the composition of symmetric nuclear matter is still the same even if we included a 
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larger number of heavier clusters in the calculations. The significant differences occur 

in the fractions of clusters with mass number (𝐴 ≥ 16), the fraction of nucleons in 

clusters with mass number (16 ≤ 𝐴 ≤ 20) reaches 32% around 0.05 

nucleon/fm3 when we included only clusters up to A = 25 but with including the 89 

clusters the fraction is reduced to 24% around 0.041 nucleon/fm3. 

On the other hand, clusters with mass number (21 ≤ 𝐴 ≤ 25) become dominant 

after 0.05 nucleon/fm3 in the first case when clusters up to A = 25 only were included 

in the symmetric nuclear matter. Whereas in the second case of including heavier 

clusters up to A = 50 the fraction of clusters with (21 ≤ 𝐴 ≤ 25) along the whole 

density range does not exceed 21% and their contribution gradually decreases beyond 

0.06 nucleon/fm3. 

 

Fig. 5.7: Clustered symmetric nuclear matter composition at T = 6 MeV when the 

calculations included clusters up to A = 25 only. 
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When we included the 89 clusters in symmetric nuclear matter, the fraction of 

nucleons in each collection of clusters is shown in Fig. 5.8. Clusters with mass 

number up to 10 are dominant at 𝜌 ≤ 0.02 nucleon/fm3. Whereas clusters with mass 

number (11 ≤ 𝐴 ≤ 20) appear strongly with fraction exceeds 50% at density range 

0.026 – 0.049 nucleon/fm3. However, 42% of nucleons are concentrated in clusters 

with mass number (21 ≤ 𝐴 ≤ 30) around 0.065 nucleon/fm3. The remaining 

clusters strongly appear beyond 0.06 nucleon/fm3 with fraction reaches to (29 – 

65)%. 

 

Fig. 5.8: Clustered symmetric nuclear matter composition at T = 6 MeV. The left part 

(a) represents the fraction of nucleons in clusters up to A = 25 when the clusters up to 

A = 50 were included in the calculations, whereas the right part (b) represents the 

fraction of nucleons in clusters 26 < A < 50. 
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5.2.4 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 8 MeV 

The composition of symmetric nuclear matter as a function of density at T = 8 MeV 

is shown in Fig. 5.9 and Fig. 5.10. Clusters with mass number (2 ≤ 𝐴 ≤ 10) are the 

dominant till 0.038 nucleon/fm3 in symmetric nuclear matter regardless of other 

clusters that were included with fraction (90 – 50)%. Moreover, the fraction of 

nucleons in clusters with mass number (11 ≤ 𝐴 ≤ 15) has slight change between 

the first case of including clusters up to A = 25 and the second one of including 

clusters up to A  = 50 in symmetric nuclear matter. 

 

Fig. 5.9: Clustered symmetric nuclear matter composition at T = 8 MeV when the 

calculations included clusters up to A = 25 only. 
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The significant differences occur in the fractions of clusters with mass number (𝐴 ≥

16), the fraction of nucleons in clusters with mass number (16 ≤ 𝐴 ≤ 20) reaches 

32% around 0.08 nucleon/fm3 if clusters up to A = 25 were included only in the 

calculations but with including the 89 clusters the fraction is reduced to 25% around 

0.07 nucleon/fm3. On the other hand, The fraction of nucleons in clusters with mass 

number (21 ≤ 𝐴 ≤ 25) reaches 45% beyond 0.09 nucleon/fm3 in the first case of 

including clusters up to A = 25 only. Whereas if we included more clusters up to A 

=50 in symmetric nuclear matter its fraction along the density range does not exceed 

23%. 

 

Fig. 5.10: Clustered symmetric nuclear matter composition at T = 8 MeV. The left 

part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters 

up to A = 50 were included in the calculations, whereas the right part (b) represents 

the fraction of nucleons in clusters 26 < A < 50. 
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In Fig. 5.10 we show the fraction of nucleons in each range of cluster size when we 

included the 89 clusters in our calculations for the composition of symmetric nuclear 

matter. At  𝜌 = 0.04 nucleon/fm3, the nucleons start gathering in clusters with mass 

number (𝐴 ≥ 26) but their contribution remains small which reaches 42% at 𝜌 = 0.1 

nucleon/fm3. So clusters with mass number up to A = 25 stays dominant up to 𝜌 = 0.1 

nucleon/fm3 and they contribute about 76% of the nuclear matter at 0.08 nucleon/fm3. 

These clusters appear strongly at 𝜌 ≥ 0.09 nucleon/fm3, where the fraction of 

nucleons that concentrate in clusters with mass number (26 ≤ 𝐴 ≤ 30) reaches 19%. 

While it reaches 18% in clusters with mass number (31 ≤ 𝐴 ≤ 40) and only 4% of 

nucleons were found in the heavier clusters (41 ≤ 𝐴 ≤ 50). 

 

5.2.5 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 10 MeV 

Clustered symmetric nuclear matter composition at T = 10 MeV is identified by     

Fig. 5.11 and Fig. 5.12. The fraction of nucleons in clusters would have soft change 

beyond 0.07 nucleon/fm3 because of the formation of clusters with mass number 

(𝐴 ≥ 26) when we included clusters up to A = 50 in the calculations. In fact, the 

fraction of heavier clusters (𝐴 ≥ 26) does not exceed 7% up to 0.1 nucleon/fm3. On 

the other hand, the dominant clusters at this temperature if we included the 89 

clusters are clusters with mass number (2 ≤ 𝐴 ≤ 30) and the remaining ones would 

have negligible contribution reaches just 2% of symmetric nuclear matter. In 
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particular, a large fraction of nucleons would bound in clusters with mass number 

(𝐴 ≤ 10) at density less than 0.063 nucleon/fm3. Beyond this density clusters with 

mass number (11 ≤ 𝐴 ≤ 20) become the dominant.  

 

Fig. 5.11: Clustered symmetric nuclear matter composition at T = 10 MeV when the 

calculations included clusters up to A = 25 only. 

 

Clusters with mass number (2 ≤ 𝐴 ≤ 5) are dominant till 0.031 nucleon/fm3 even if 

heavier clusters up to A = 50 were included. These fractions reach 89% around 0.007 

nucleon/fm3 to 48% around 0.03 nucleon/fm3. However, Clusters with mass number 

(6 ≤ 𝐴 ≤ 10) appear significantly in the density range 0.037 – 0.066 nucleon/fm3 

with their contribution reaching 56%. On the other hand, the fraction of nucleons in 

clusters with mass number (11 ≤ 𝐴 ≤ 25) has slightly changed when heavier 

clusters (𝐴 ≥ 26)  were included in symmetric nuclear matter. Finally, we can note 
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that the fractions of nucleons which concentrated in clusters (A ≥ 26) do not exceed 

5% along the whole density range up to 0.1 nucleon/fm3. 

 

Fig. 5.12: Clustered symmetric nuclear matter composition at T = 10 MeV. The left 

part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters 

up to A = 50 were included in the calculations, whereas the right part (b) represents 

the fraction of nucleons in clusters 26 < A < 50. 

 

5.2.6 CLUSTERED SYMMETRIC NUCLEAR MATTER AT T = 12 MeV 

The fraction of nucleons in clusters as a function of density at T = 12 MeV is shown 

in Fig. 5.13 and Fig. 5.14. Clusters with mass number (2 ≤ 𝐴 ≤ 5) are dominant till 

0.047 nucleon/fm3 where their contribution has a maximum of about 88% of the 

nuclear matter at 𝜌 = 0.006 nucleon/fm3 and falls down to about 45% at 𝜌 = 0.047 

nucleon/fm3 when the next group of clusters starts to dominate. Whereas the nucleons 

would bound at 0.029 nucleon/fm3 to form clusters with mass number (6 ≤ 𝐴 ≤ 10), 
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and almost 55% of nucleons concentrate in these clusters around 0.064 nucleon/fm3 

before their gradual disappearance. On the other hand, clusters with mass number 

(11 ≤ 𝐴 ≤ 15) appeared beyond 0.04 nucleon/fm3. Their fraction is increasing with 

density and reaches 36% as maximum at 0.1 nucleon/fm3. 

 

Fig. 5.13: Clustered symmetric nuclear matter composition at T = 12 MeV when the 

calculations included clusters up to A = 25 only. 

 

Along the whole density range, the largest fraction of nucleons that have gathered to 

form clusters with mass number (16 ≤ 𝐴 ≤ 20) is 12%. While clusters with mass 

number (21 ≤ 𝐴 ≤ 25) contribution may be negligible as its fraction does not 

exceed 3%. Clusters with mass number (𝐴 ≥ 26) start to form beyond 0.06 

nucleon/fm3 but their fraction does not exceed 0.7%, so we can neglect their 

contributions in symmetric nuclear matter. Hence the composition of symmetric 
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nuclear matter at T = 12 MeV does not change even if we included more and more 

heavier clusters in the calculations.  

 

Fig. 5.14: Clustered symmetric nuclear matter composition at T = 12 MeV. The left 

part (a) represents the fraction of nucleons in clusters up to A = 25 when the clusters 

up to A = 50 were included in the calculations, whereas the right part (b) represents 

the fraction of nucleons in clusters 26 < A < 50. 
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In general, we can conclude that the cluster distribution depends on the symmetric 

nuclear matter temperature and density. At fixed temperature, the symmetric nuclear 

matter composition changes with increasing the total density such that correlations 

between a larger numbers of nucleons become significant. As a consequence, the 

fractions of clusters with smaller mass number decrease and the formation of heavier 

clusters increases as density increases. 

On the other hand, the heavier clusters appear at higher density with increasing the 

symmetric nuclear matter temperature. However, the fractions of heavy clusters 

become negligible at high temperatures T ≥ 10 MeV because of the lag in the lighter 

clusters dissolution.  

Clusters with mass number up to 50 play a significant contribution in symmetric 

nuclear matter composition at T ≤ 6 MeV while at T = 8 MeV only clusters up to A = 

40 have a significant presence. At T =10 MeV only clusters with mass number up to 

30 are present  while at T = 12 MeV only clusters with mass number up to 15 have a 

substantial contribution in symmetric nuclear matter. 

Finally, including heavier clusters makes the study more reliable where the nucleons 

are distributed among different groups of clusters not in the heaviest one only. 
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CHAPTER 6 

RESULTS AND CONCLUSION 

In this chapter, we will show and discuss the effect of including clusters with mass 

number up to A = 50 on the equation of state of clustered symmetric nuclear matter. 

In the previous chapters, the composition of clustered symmetric nuclear matter was 

determined, and here we will show the effect of including these clusters on the 

clustered symmetric nuclear matter critical point. 

6.1 CLUSTERED SYMMETRIC NUCLEAR MATTER EQUATION OF 

STATE  

The pressure of clustered symmetric nuclear matter contains contributions from all its 

contents including the free nucleons and the clusters.  

                                                   𝑃 =  𝑃𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠 + 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠                                      (6.1) 

where 𝑃𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠 is the pressure due to the free nucleons which is given by Eq. 2.3 

for an ideal Fermi gas of nucleons. Whereas, 𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is the sum of all cluster 

pressures. Each cluster type contributes a pressure which is given by Eq. 2.3 for an 

ideal Fermi gas if the cluster is fermionic or by Eq. 2.6 for an ideal Bose gas if the 

cluster is bosonic. 
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As illustrated in chapter 5, we must include the clusters in low and intermediate 

density symmetric nuclear matter and we cannot ignore them. Fig. 6.1 shows the 

differences between the equation of state of low density symmetric nuclear matter in 

different treatments; ideal gas of nucleons, nucleonic gas with Skyrme interactions 

and clustered symmetric nuclear matter treated by using modified NSE model – with 

clusters up to A = 50. 

 

Fig. 6.1: Pressure isotherm at T = 4 MeV in different treatments; ideal gas of 

nucleons, nucleonic gas with Skyrme interactions and clustered symmetric        

nuclear matter with clusters up to A = 50. 

 

The ideal fermi gas pressure increases monotonically with density. It is clear that the 

pressure of the ideal gas of nucleons and the pressure of Skyrme interaction nucleonic 

gas agree at extremely low densities as illustrated in Fig. 6.1. Whereas, clustered 

symmetric nuclear matter pressure isotherm has a different behaviour at low densities 
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due to the presence of clusters and their interaction with free nucleons. The 

interacting nucleonic gas pressure is larger than the pressure of clustered symmetric 

nuclear matter (due to the lower pressure of the bosonic clusters in the latter case), 

otherwise they have a similar behaviour increasing gradually with density up to a 

density of about 0.005 nucleon/fm3. After that they both decrease with the pressure of 

the nucleonic gas dropping much faster.  

We can note that clustered symmetric nuclear matter pressure isotherm after 0.005 

nucleon/fm3 decreases with increasing density up to 0.014 nucleon/fm3 before it starts 

increasing again with density. Hence its behaviour is the same as nucleonic gas with 

Skyrme interaction pressure isotherm behaviour which is discussed in chapter 3. We 

will examine the effect of including clusters in symmetric nuclear matter on its 

equation of state by determining the critical point for clustered symmetric nuclear 

matter ( 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝜌𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ) in the next section and comparing it with other 

studies. 

6.2 COMPARISON BETWEEN THE RESULTS OF THE PRESENT WORK 

AND PREVIOUS STUDIES  

 Clustered symmetric nuclear matter pressure isotherms were drawn by using Eq. 6.1. 

We firstly include clusters with mass number up to A = 25 only before extending our 

calculation by including the remaining clusters with mass number up to A = 50. 
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Fig. 6.2: Clustered symmetric nuclear matter pressure isotherms at three different 

temperatures; blue-dashed lines give pressure isotherms when only clusters up to A = 

25 are included in the calculation, whereas the red-solid lines give pressure isotherms 

when clusters up to A = 50 are included in the calculation. 

 

The pressure for clustered symmetric nuclear matter increases as temperature 

increases at specific density. However, it has lower values at high densities and fixed 

temperature when more and more clusters are included in the calculation as illustrated 

in Fig. 6.2 especially at low temperatures when the heavier clusters have significant 

contributions in symmetric nuclear matter. Regardless of the number of clusters 

included in the calculations the pressure isotherms have the same general behaviour 

similar to a van der Waals gas: the pressure initially increases with increasing density 

up to a certain value before it starts decreasing as the density increases and them 

finally increasing again as the density increases further).  
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Hence symmetric nuclear matter pressure isotherm does not change if we included 

clusters up to A = 50 at low densities but differs at higher densities due to the 

formation of heavier clusters, especially at low temperatures. For example, the 

change in pressure isotherm between the nuclear matter including clusters up to A = 

25 and one with clusters up to A = 50 appears beyond 0.018 nucleon/fm3 when 

heavier clusters start to form. At 0.1 nucleon/ fm3 the pressure is reduced by about 

0.008 MeV.fm3 at T = 4 MeV and with same amount at T = 8 MeV where it is 

reduced from 0.078 – 0.07 MeV.fm3 at 0.1 nucleon/fm3. At T = 8 MeV the changes 

appear beyond 0.06 nucleon/fm3 between the two cases. On the other hand, it is not 

affected at high temperatures (T ≥ 12MeV) even at higher densities till 0.1 

nucleon/fm3 by including clusters up to A = 50. In general, the effect of adding 

heavier clusters to the calculations is important at lower temperatures. 

The pressure isotherm at T = 12 MeV does not change by including the A > 25 

clusters since its composition has a significant contribution from clusters with mass 

number up to A = 15 only. We also note that the critical point locates around T = 12 

MeV. After studying the behaviour of pressure isotherms near T = 12 MeV, the 

critical temperature for clustered symmetric nuclear matter is 12.5 MeV where the 

pressure isotherm has one inflection point. Above this temperature clustered 

symmetric nuclear matter pressure isotherm increases as density increases and one 

fluid phase exists as shown in Fig. 6.3. 
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Fig. 6.3: Clustered symmetric nuclear matter pressure isotherm at different 

temperatures including the critical one. 

 

Table 6.1 summarizes the parameters of the critical point obtained in the present work 

and in other studies. In most cases, including clusters tends to lower the critical 

temperature. The increase in Tcritical with the inclusion of clusters for the case of RMF 

is attributed by Typel et al to the overestimation of deuteron production (see Fig. 5.1). 

The main factor that makes our result change slightly from [19] is the differences 

between our Mott densities values and the ones that were used in [19].  
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Table 6.1: Critical point values obtained in the present work and in other studies. 

  𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝜌𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

 ( MeV ) ( nucleon/fm3 ) ( MeV.fm-3 ) 

The present work 

(
Including clusters with

 mass number up to A =  50 
) 

 

12.5 

 

0.0574 

 

0.2211 

The present work 

(
Nucleons with Skyrme

 interactions
) 

 

17.32 

 

0.058 

 

0.2759 

W. Awad [19] 

(
Including clusters with

 mass number up to A =  25 
) 

 

 

11.8 

 

 

0.06 

 

 

0.194 

Typel et al [7] 

( RMF without clusters ) 

 

13.72 

 

0.0452 

 

0.1781 

Typel et al [7] 

(
 RMF with light clusters

[d, t, h and α]
 

) 

 

15.12 

 

0.1018 

 

0.9029 

Typel et al [7] 

(
 QS with light clusters

[d, t, h and α]
 

) 

 

12.1 - - 
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6.3 CONCLUSION 

Clusters with mass number up to A = 50 must be included in the equation of state of 

low and intermediate density symmetric nuclear matter especially at low temperatures 

where these clusters play a significant role in symmetric nuclear matter composition. 

The cluster distribution depends on both the temperature and density of symmetric 

nuclear matter. The light clusters up to A = 4 are dominant at very low densities 

whereas the heavier clusters appear at the higher densities where many-body 

correlations become significant. However, as temperature increases, the presence of 

the heavier clusters decreases gradually. At T = 12 MeV, only clusters up to A= 15 

have a significant contribution. 

In general, including clusters with mass number ( A > 4 ) in low density symmetric 

nuclear matter reduces low density symmetric nuclear matter critical temperature by 

several MeVs in comparison with that obtained in [7, 14] where the clusters were not 

taken into account or just included  light clusters with mass number up to A = 4. 

In this work, we determined the composition of  low and intermediate density 

symmetric nuclear matter by including light and medium clusters with mass number 

up to A = 50. The interactions between nucleons are taken into account only through 

cluster formation. To enhance this work, density-dependent effective masses of 

nucleons and clusters can be considered as medium modifications. Here, we dealt 

with Zero CM momentum clusters, future work can take into account CM momentum 
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of clusters which affects the binding energy of clusters and increase their Mott-

densities. 

This work can be used in astrophysical applications such as supernova explosions and 

to examine the early evolution of the universe by cosmologists. It is also important 

for the description of heavy ion collisions (HIC) in which light and medium nuclear 

clusters are formed.  
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[7] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H.H. Wolter, "Composition and 

thermodynamics of nuclear matter with light clusters," Physical Review C, vol. 81, pp. 

015803 - 015825, 2010. 

[8] S. Typel, "Clusters in nuclear matter and the equation of state," Journal of Physics: 

Conference Series, vol. 420, pp. 012078 - 012092, 2013. 

[9] Q. N. Usmani, N. Abdullah, K. Anwar, and Z. Sauli, "Nuclear matter properties, 

phenomenological theory of clustering at the nuclear surface, and symmetry energy," 

Physical Review C , vol. 84, pp. 064313 - 06431369, 2011. 

[10] H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, and M. Takano, "Nuclear 

equation of state for core-collapse supernova simulations with realistic nuclear forces," 

Nuclear Physics A, vol. 961, pp. 78 - 105, 2017. 



74 
 

 
 

[11] Ad. R. Raduta, and F. Gulminelli , "Statistical description of complex nuclear phases in 

supernovae and proto-neutron stars," Physical Review C , vol. 82, pp. 065801 - 065840, 

2010. 

[12] M. Hempel, and J.Schaffner-Bielich, "statistical model for a complete supernova 

equation of state," Nuclear Physics A, vol. 837, pp. 210 - 254, 2010. 

[13] G. Röpke, "Light nuclei quasiparticle energy shift in hot and dense nuclear matter," 

Physical Review C, vol. 79, pp. 014002 - 014017, 2009. 

[14] S. Levit, and P. Bonche, "Coulomb Instability in hot compound nuclei approaching 

liquid-gas transition," Nuclear Physics A, vol. 437, no. 2, pp. 426 - 442, 1985. 

[15] H. R. Jaqaman, "Instability of hot nuclei," Physical Review C, vol. 40, no. 4, pp. 1677 - 

1684, 1989. 
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APPENDIX A  

ENTROPY OF CLUSTERED SYMMETRIC NUCLEAR MATTER  

Typel et al [7] found that the entropy per nucleon for symmetric nuclear matter with 

light clusters up to A = 4 decreases with increasing density as illustrated in Fig. A.1 

except for a small region at low densities and low temperatures where entropy 

increases as the clusters dissolve into free protons and neutrons in the surrounding 

medium. This made Typel et al conclude that the formation of clusters reduces the 

entropy per nucleon as compared to nuclear matter without clusters that is, consisting 

only of free protons and neutrons. We will show that this does not contradict with the 

Second Law of Thermodynamics.  

 
Fig. A.1: Symmetric nuclear matter entropy per nucleon SA  as a function of the total density 

n for different temperatures T. thick solid lines represent the result with including light 

clusters treated using RMF whereas the NSE calculation with light clusters but without 

considering their dissolution is represented by thin solid lines.    
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Typel et al are comparing between clustered symmetric nuclear matter and nuclear 

matter without clusters at constant temperature. What we want to emphasize is that it 

is not meaningful to compare at the same T, at least as far as the Second Law of 

thermodynamics is concerned. 

The difference between the entropy of symmetric nuclear matter consisting of protons 

and neutrons only) and that of clustered symmetric nuclear matter appears strongly at 

low temperatures. We first note that the energy per nucleon for symmetric nuclear 

matter without clusters must remain the same after the formation of clusters due to 

energy conservation. As an example we evaluate the energy per nucleon for clustered 

symmetric nuclear matter at T = 6 MeV and 𝜌 = 0.001 nucleon/fm3 by using the 

following expression [23]: 

                     
𝑬

𝑵
=  

𝟑

𝟐
 𝒌𝑩 𝑻 [𝒇𝒇𝒓𝒆𝒆 𝒏𝒖𝒄𝒍𝒆𝒐𝒏𝒔

𝒇𝟓 𝟐⁄ (𝒛𝒇𝒓𝒆𝒆)

𝒇𝟑 𝟐⁄ (𝒛𝒇𝒓𝒆𝒆)
+  

𝒇𝒄

𝑨𝒄

𝒇𝟓 𝟐⁄ (𝒛𝒄)

𝒇𝟑 𝟐⁄ (𝒛𝒄)
] − 

𝑩𝒄𝒇𝒄

𝑨𝒄
                    A.1 

where 𝑓𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠 =  
𝜌 𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠

𝜌𝑡𝑜𝑡𝑎𝑙
  is free nucleons fraction density, 𝜌𝑡𝑜𝑡𝑎𝑙 is given 

by Eq. 4.3 with including light clusters up to A = 4 only, 𝑓𝑐 =  
𝜌𝑐

𝜌𝑡𝑜𝑡𝑎𝑙
 is the cluster 

fraction density, 𝜌𝑐 is given by Eq. 4.4, 𝐴𝑐 is the cluster mass number and 𝐵𝑐 is the 

cluster binding energy which is given by Eq. 4.6. The functions  𝑓𝑣(𝑧) are defined by 

[23], 

                                                     𝑓𝑣(𝑧) = 𝑧 ±  
𝑧2

2𝑣 +  
𝑧3

3𝑣 ± ⋯                                                 A.2 



79 
 

 
 

 where the upper sign is used for bosonic clusters and the lower sign is used for free 

nucleons and fermionic clusters, the fugacity 𝑧 =  𝑒(𝜇 𝑘𝐵𝑇⁄ ) and μ is the chemical 

potential. The fugacity of cluster C is denoted by zc and the fugacity of free nucleons 

is denoted by  zfree. Finally, the chemical potentials of the clusters are given by 

Eq.4.2 while for the free nucleons the chemical potential is given by Eq.2.2 in the 

case of clustered nuclear matter. 

From Eq. A.1 we find that the energy per nucleon 
 𝐸

 𝑁
 (at T= 6 MeV and 𝜌 = 0.001 

nucleon/fm3) = 4.2859 MeV for clustered symmetric nuclear matter. We mentioned 

above that the energy per nucleon for nuclear matter must be the same before forming 

clusters and after that. So the temperature for clustered symmetric nuclear matter will 

be higher than the corresponding temperature in the absence of clusters due to the 

absence of the cluster binding energy in the latter case. The energy per nucleon at low 

temperatures for symmetric nuclear matter with no clusters is given by the first term 

of Eq. A.1.  

                                        
𝐸

𝑁
=  

3

2
 𝑘𝐵 𝑇 [ 𝑓𝑓𝑟𝑒𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑛𝑠

𝑓5 2⁄ (𝑧𝑓𝑟𝑒𝑒)

𝑓3 2⁄ (𝑧𝑓𝑟𝑒𝑒)
 ]                                     A.4 

On the other hand, nucleons in fact interact with each other by nuclear force. We used 

the Skyrme interaction which is mentioned in chapter 3 as a simple parameterization 

to describe the interactions between the nucleons. So the chemical potential for free 
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nucleons in the case of nuclear matter without clusters is given by Eq. 3.13, which 

was used in  𝑓𝑣(𝑧𝑓𝑟𝑒𝑒). 

So to keep the energy per nucleon conserved, the temperature of symmetric nuclear 

matter without clusters must be 2.784 MeV rather than 6 MeV. When the clusters 

form the excess energy released by the binding of the nucleons into the clusters raises 

the temperature, increasing it from 2.784 MeV to 6 MeV.    

 We estimated the entropy for symmetric nuclear matter with no clusters (free 

nucleons) by using the following expression [40]: 

             
 𝑆

 𝑁
=   

−1

𝜌
 

𝑔

(2𝜋)3  4𝜋 ∫ 𝑘2 𝑑𝑘 [(1 − 𝑓) ln(1 − 𝑓) +  𝑓 ln 𝑓 ]                    A.5 

where 𝑓 =  {exp(𝛽 [𝜀 −  𝜇]) + 1}−1, 𝜀 is given by Eq. 3.12 and 𝜇 is given by Eq. 

3.13. 

For clustered symmetric nuclear matter entropy we used Fig. A.1 which is taken from 

[7]. Table A.1 summarizes the differences in entropies per nucleon for both 

symmetric nuclear matter with clusters and without clusters (free nucleons). 
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Table A.1: Entropy per nucleon S/N for symmetric nuclear matter with no clusters 

and clustered symmetric nuclear matter at 0.001 nucleon/fm3 and two different 

temperatures. 

 Symmetric nuclear matter 

( free nucleons ) 

Clustered symmetric nuclear 

matter 

Entropy  S/N [𝑘𝐵] Entropy  S/N [𝑘𝐵] 

T = 2.784 MeV 4.0116 2.69 

T = 6 MeV 5.1510 5.0 

 

It is clear that the temperature of nuclear matter consisting of only nucleons without 

clusters increases from T = 2.784 MeV to T = 6 MeV when clusters are formed. 

Moreover, the entropy per nucleon increases from 4.0116 𝑘𝐵 to 5.0 𝑘𝐵 as required by 

the second law of thermodynamics. However, when we compare nuclear matter 

without clusters with nuclear matter containing clusters at the same temperature the 

one with clusters has lower entropy.  
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